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3. DERIVATIONS ET BIDERIVATIONS

3.1. Définitions. Soit g une algébre de Leibniz. Une dérivation d: g = g
est une application k-linéaire qui vérifie

d([x, »]) = [dx, y] + [x,dy], pourtout x,y€g.
Une anti-dérivation D: g — @ est une application k-linéaire qui vérifie
D([x,y]) = [Dx,y] — [Dy,x] pour tout x,ye€g.

Notons que si g est une algébre de Lie il n’y a pas de différence entre dérivation
et anti-dérivation.

Par définition, une bidérivation de g est la donnée d’une dérivation d et
d’une anti-dérivation D qui vérifient en outre

(3.1.1) [x, dy] = [x, Dy], pourtout x,yegq.

3.2. Bidérivation intérieure. Pour tout x € g ’application ad(x) définie
par ad(x) (¥) = — [y, x] est une dérivation et ’application Ad(x) définie par
Ad(x) () = [x, y] est une anti-dérivation. De plus, (ad(x), Ad(x)) est une
bidérivation (cf. 1.1) appelée la bidérivation intérieure associée a X.

3.3. L’algébre de Leibniz Bider (g). L’ensemble des bidérivations de g
forme un k-module que I’on munit d’un crochet en posant

[d, D),(d",D")] =(dd’"—d'd, Dd’' — d’'D) .

On peut montrer que, non seulement le membre de droite est bien une
bidérivation, mais de plus ce crochet vérifie la relation (L). On a ainsi construit
’algébre de Leibniz des bidérivations de g, que I’on note Bider (g). On vérifie
aisément que

g — Bider(g), xt (adx, Adx)

est un morphisme d’algébres de Leibniz.

4. EXTENSIONS ABELIENNES D’ALGEBRES DE LEIBNIZ ET REPRESENTATIONS

Une algebre de Leibniz abélienne est tout simplement une algébre de Lie
abelienne (i.e. [x, y] = 0). Par définition une extension abélienne d’algébres de
Leibniz est une suite d’algébres de Leibniz

O——)M—)b—)g—)(}
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qui est exacte et scindée en tant que suite de k-modules et dans laquelle M est
une algebre de Leibniz abélienne.
Cette suite exacte permet de définir deux actions de ¢ sur M:

[—s _]: QXM_’M, [g)m] = [gam] s
[_: _]: M X Q—’M,[m;g] ‘= [mygl .

Dans ces deux formules g est un relévement de g € g dans |y et le crochet de
droite est celui de f). La notation ne préte pas a confusion lorsqu’on sait dans
quelle algébre se trouvent les variables.

La relation (L) du crochet de fy implique que ces deux actions et le crochet
de ¢ sont reliés par les relations

(MLL) [m, [x, y1] = [[m, x1, y] — [[m, 1, x]
(LML) [x, [m, ¥1] = [[x, m], y] = [[x, y1, m]
(LLM) [x, v, m]] = [[x, y1, m] — [[x, m], y]

pour tout m € M et tout x, y € g.

4.1. Définition. Pour toute algebre de Leibniz ¢, une représentation
de g est la donnée d’un k-module M et de deux applications bilinéaires
[—, ~ligXM->Met [-,—-]: M X g—> M vérifiant les axiomes (MLL),
(LML) et (LLM).

Remarquons que le premier axiome ne fait intervenir que 1’action a droite
de g sur M. Notons aussi que les deux derniers impliquent la relation

(ZD) [x, [y, m]] + [x, [m, 1] =0 .
4.2. Représentation adjointe. 1l est clair que si ’on prend M = ¢ et que

I’on prend pour chacune des actions de ¢ le crochet de g, on obtient une
représentation appelée la représentation adjointe.

4.3. Symétries. Une représentation M de @ est dite symétrique si
[m,x] + [x, mM] =0 pourtout meM,xeq.

Par exemple si g est une algebre de Lie et M une représentation au sens des
algeébres de Lie, alors c’est une représentation symétrique au sens des algeébres
de Leibniz.

Une représentation M de ¢ est dite antisyméirique si

[x, mM] =0 pourtout meM,xegqg.
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Il est clair que pour toute algébre de Leibniz g le noyau g%"" (¢f. 2.1) est une
représentation de 1’algébre de Leibniz g;;,. C’est une représentation
antisymétrique.

Une représentation M de g est dite triviale si elle est a la fois symétrique
et antisymétrique, c’est-a-dire

[x, m] =0 =[m,x] pourtout meM,x€eg.

4.4. Coreprésentations. Dans I’analogie avec les algébres associatives,
les représentations sont 1’analogue des modules a droite (voir ci-dessous
thm 5.2). La notion duale, c’est-a-dire 1’analogue des modules a gauche, est
celle de coreprésentation.

Par définition une coreprésentation N de 'algébre de Leibniz g est la

donnée dun k-module et de deux actions [—,-]:gX N> N et
[—, —1: N x g — N vérifiant les axiomes suivants

(MLL)' [[x, ¥1, m] = [x, [y, m]] — [y, [x, m]]

(LML)’ [[y, [m, x]] = [y, m],x] = [m, [x, 1]

(LLM)’ [[m: X],y] = [m, [X, y]] - [[y) m],X] ’

pour tout m € N et tout x, y € g.
Notons que les deux derniéres relations impliquent la relation

(ZD)’ [y, Im, x]] + [[m, x],y] =0.

I1 est clair que toute représentation d’une algébre de Lie définit a la fois une
représentation et une coreprésentation au sens des algébres de Leibniz.

Le produit tensoriel d’une coreprésentation N et d’une représentation M
est le quotient de N ® , M par les relations

[, x] ®m~n®[x,m] e [x,n]&®m~n [m,x]

pour tout x € g, n € N et m € M.

5. ALGEBRE ENVELOPPANTE (cf. [L-P]).

La catégorie des représentations d’une algebre de Leibniz donnée ¢ est une
catégorie abéliennne. Il est naturel d’essayer de la représenter comme une

catégorie de modules sur une certaine algebre, appelée algébre enveloppante
de g.
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