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272 J.-L. LODAY
2. EXEMPLES D’ALGEBRES DE LEIBNIZ

2.0. Algebres de Lie. 1l est clair d’aprés ce qu’on a dit précédemment
qu’une algebre de Lie est un cas particulier d’algébre de Leibniz. Si I’on
quotiente 1’algébre de Leibniz g par 1’idéal bilatére engendré par les crochets
[x, x], x € g, on obtient une alg¢bre de Lie que ’on note g, ,.. Le morphisme
g — ;. st universel pour tout morphisme de g dans une algebre de Lie. Son
noyau est noté gen.

2.1. Action pré-croisée. Soit g une algébre de Lie et M un g-module. On
note m? ’action de g € g sur m € M. Soit p: M — @ une application linéaire
g-équivariante c’est-a-dire

u(me) = [u(m),gl, VmeM,Vgegq.
Le crochet [—, —]" défini sur M par
[m,n]” := m*», Vm,neM,

munit M d’une structure d’algébre de Leibniz. Constatons que p devient un
morphisme d’algebres de Leibniz.

Remarquons que toute algébre de Leibniz f) peut &tre considérée comme
un §;;.-module muni d’un b, ,.-homomorphisme ) — b ;.. Appliquée a cette
situation la procédure précédente redonne bien évidemment la structure
d’algebre de Leibniz de départ de ).

2.2 Algeébre associative avec opérateur. Soit A une k-algebre associative
munie d’une application k-linéaire D: A — A vérifiant

(*) D(a(Db)) = DaDb = D((Da)b), pourtout a,beA.
On définit alors un crochet sur 4 en posant
[a,b] := aDb — Dba .

On vérifie que le k-module 4, muni de ce crochet est une algebre de Leibniz
que ’on note Ap. Il y a de nombreux exemples de telles situations.

De maniére évidente D = 1Id vérifie (*) et A4 est I’algebre de Lie classique
associée a une algébre associative.

— Soit D:A—> A un endomorphisme d’algebre tel que D? =D
(idempotent), alors (*) est vérifiée.

— Soit D: A — A une dérivation de A4 de carré nul (D?=0). La
relation (*) est aussi vérifiée.
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23, Module tensoriel et algébre de Leibniz libre [L-P].

Soit ¥ un k-module et T(V) VPV ..o Ver® ... le module
tensoriel sur V quotienté par la partie de degré 0 (= k). On peut montrer qu’il
existe une et une seule structure d’algébre de Leibniz sur T'(V) vérifiant

[x,v] = x®v, pourtout xE¢€ T(V), ve V.

I’algébre de Leibniz Z(V) ainsi définie est en fait I’algebre de Leibniz libre
sur V, i.e. le foncteur & est adjoint a gauche du foncteur oubli des algeébres
de Leibniz dans les k-modules.

Notons que (V). est 1’algébre de Lie libre sur V. L’application
canonique T(V) = Z(V) = Z(V)vi est induite par

X ® ... Qx,= [ [x1, ..., xn1], x4l -
2.4. Complexe de Hochschild. Soit A une algeébre associative sur k et
considérons le bord de Hochschild
b:AR AR A>ARLA,
bx®yR2)=xyR@z2-xQyz+2x =
Xy
Munissons le quotient A ® A4/Im b du crochet

[a @ b,c® d] = (ab— ba) ® (cd — dc) .

On vérifie que ce crochet est bien défini et satisfait a la relation (L). Donc
A ® A/Im b est une algébre de Leibniz (qui n’est pas une algeébre de Lie en
général). Si on munit A de sa structure d’algebre de Lie usuelle, I’opérateur

b:ARQA/Imb—-A, bxXRy) =xy—yx,

devient un homomorphisme d’algebres de Leibniz. Son noyau (resp. conoyau)
est le groupe d’homologie de Hochschild HH,(A) (resp. HH,(A)).

2.5. Basses dimensions. Si @ est de dimension 1 sur £ on a [x, x] = ax
pour un certain a € k. C’est un crochet de Leibniz si et seulement si a? = 0.
Donc si k est sans diviseurs de zéro, la seule structure d’algebre de Leibniz
sur k est la structure abélienne. Si g est de dimension 2 engendrée par x et y
et si k est un corps, il y a 3 types d’algébre de Leibniz suivant la structure
de gann.

— s1 dim g"" = 0, alors ¢ est une algébre de Lie,

— st dim g =1 et si g**" est un module trivial sur g;;., alors g est
isomorphe a I’algebre définie par

ox]l=[rxl=[xyl=0 e [yy]=x;
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— st dim g*"" = 1 et si g*"" est un module non trivial sur g, ,., alors g est
isomorphe a I’algebre définie par

[, x] =[».x]=0,[x,]=x e [yyl=x.

2.6. Algebre de Lie partielle. Considérons deux algeébres de Lie g,
et g, munies d’homomorphismes do, di: ¢, = g, et So: g, ¢, vérifiant
doso = 1d = d,sy (par exemple le début d’une algébre de Lie simpliciale).
Posons ¢ = Ker d; et définissons un nouveau crochet [—, —]’ sur ¢ par:

[x, 1" = [x, sodo ()] .
On vérifie que ce crochet munit g d’une structure d’algébre de Leibniz. Cette
construction apparait naturellement dans le travail de Baues et Conduché
[B-C] sur les modeles homotopiques minimaux. Elle est appelée «algébre de
Lie partielle» et est obtenue comme série centrale descendante d’un module
pré-croisé de groupes. C’est un sous-exemple de 2.1.

2.7.  Mécanismes hamiltoniens. (J.-L. Koszul [K2]). Soit g une super-
algebre de Lie Z-graduée. On note gj., la composante de bidegré (i, ),
ieZ/2Z, jeZ. Soit we g, tel que [w, w] = 0. On définit un crochet

[—-, =1, sur g_, par
[a, b]w ‘= [a: [Wa b]] .

Ce crochet définit sur g_; une structure de super-algebre de Leibniz (a
condition d’échanger les parités de ¢_).

2.8. Formes différentielles (J.-L. Brylinski [B]). Soit X une variété
différentiable de dimension n et n € Q"(X) une forme volume. On note ¢
I’algébre de Lie des champs de vecteurs & sur X tels que Z(€).n = 0.
L’application y: g = Q" 1(X)., £ = i(§) .n dans les formes fermées est un
isomorphisme qui permet de munir Q”~1(X)., d’une structure d’algébre de
Lie, dont dQ”~2(X) est une sous-algébre de Lie. On définit alors un crochet
sur Q7-2(X) par

[0, B] := ZL(y~1d(a)).B

qui munit Q”~2(X) d’une structure d’algebre de Leibniz gauche. Notons que
la suite

0~ Q-2(X), — Q"-2(X) > dQ"-2(X) — 0

est une extension centrale antisymétrique d’algebres de Leibniz (cf. 4.3).
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