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2. Exemples d'algèbres de Leibniz

2.0. Algèbres de Lie. Il est clair d'après ce qu'on a dit précédemment

qu'une algèbre de Lie est un cas particulier d'algèbre de Leibniz. Si l'on
quotiente l'algèbre de Leibniz g par l'idéal bilatère engendré par les crochets

[x, x], x e g, on obtient une algèbre de Lie que l'on note gLie. Le morphisme
g g Lie est universel pour tout morphisme de g dans une algèbre de Lie. Son

noyau est noté ga/îL

2.1. Action pré-croisée. Soit g une algèbre de Lie et M un g-module. On

note mg l'action de g e g sur m e M. Soit \x: Mg une application linéaire

g-équivariante c'est-à-dire

\x(mg) [p(ra), g], Vm e M, Vg e g

Le crochet [ - - ] ' défini sur M par

[m, n) ' : Vm, n e M
munit M d'une structure d'algèbre de Leibniz. Constatons que p devient un
morphisme d'algèbres de Leibniz.

Remarquons que toute algèbre de Leibniz ï) peut être considérée comme

un I)Lie-module muni d'un ï)Lie-homomorphisme {) ï)Lie. Appliquée à cette

situation la procédure précédente redonne bien évidemment la structure

d'algèbre de Leibniz de départ de f).

2.2 Algèbre associative avec opérateur. Soit A une ^-algèbre associative

munie d'une application k-linéaire D:A -> A vérifiant

(*) D(a(Db)) Da Db D((Da)b), pour tout a, b e A

On définit alors un crochet sur A en posant

[a, b] : aDb - Db a

On vérifie que le /:-module A, muni de ce crochet est une algèbre de Leibniz

que l'on note AD. Il y a de nombreux exemples de telles situations.

De manière évidente D Id vérifie (*) et Aïd est l'algèbre de Lie classique

associée à une algèbre associative.

— Soit D:A~+A un endomorphisme d'algèbre tel que D2 D
(idempotent), alors (*) est vérifiée.

— Soit D:A~+A une dérivation de A de carré nul (D2 0). La

relation (*) est aussi vérifiée.
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2.3. Module tensoriel et algèbre de Leibniz libre [L-P].

Soit V un ^-module et T(V) F © F02 © © V®n © le module

tensoriel sur F quotienté par la partie de degré 0 k). On peut montrer qu il

existe une et une seule structure d'algèbre de Leibniz sur T{V) vérifiant

[x, y] x (g) u, pour tout x e t{V), v e F

L'algèbre de Leibniz Sf{V) ainsi définie est en fait l'algèbre de Leibniz libre

sur F, i.e. le foncteur S7 est adjoint à gauche du foncteur oubli des algèbres

de Leibniz dans les k-modules.

Notons que &(V)ut est l'algèbre de Lie libre sur F. L'application

canonique T{V) i?(F) 2d{V)ut est induite par

X\ © ® X,? l—> [[... [X\ ...], Xn - i ], xn ]

2.4. Complexe de Hochschild. Soit A une algèbre associative sur k et

considérons le bord de Hochschild

b\A ®kA ®kA -*A ®kA

ö(x©jf®z) =xy®z-x®yz + zx
© y •

Munissons le quotient A © H/Im b du crochet

[a © b, c © d] - {ab - ba) © {cd - de)

On vérifie que ce crochet est bien défini et satisfait à la relation (L). Donc

A © A/lm b est une algèbre de Leibniz (qui n'est pas une algèbre de Lie en

général). Si on munit A de sa structure d'algèbre de Lie usuelle, l'opérateur

b: A © y4/Im b A b{x © y) xy - yx,
devient un homomorphisme d'algèbres de Leibniz. Son noyau (resp. conoyau)
est le groupe d'homologie de Hochschild HHX {A) (resp. HH0(A)).

2.5. Basses dimensions. Si g est de dimension 1 sur k on a [x} x] ax
pour un certain a e k. C'est un crochet de Leibniz si et seulement si a2 0.

Donc si k est sans diviseurs de zéro, la seule structure d'algèbre de Leibniz
sur k est la structure abélienne. Si g est de dimension 2 engendrée par x et y
et si k est un corps, il y a 3 types d'algèbre de Leibniz suivant la structure
de qann.

— si dimqann 0, alors g est une algèbre de Lie,

— si dim gann 1 et si §ann est un module trivial sur gLie, alors g est

isomorphe à l'algèbre définie par

[x, x] [y, x] [x, y] 0 et [y, y] x ;
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— si dim Qann 1 et si gann est un module non trivial sur gLie, alors g est

isomorphe à l'algèbre définie par

[x, x] [yy x] 0, [x, y] x et [y, y] x

2.6. Algèbre de Lie partielle. Considérons deux algèbres de Lie gl5
et g0 munies d'homomorphismes dp. gj -> g0 et ^o*go~^0i vérifiant
d0s0 id d\Bo (par exemple le début d'une algèbre de Lie simpliciale).
Posons g Ker<ii et définissons un nouveau crochet [ - -]' sur g par:

[x,y]' [x,s0dQ(y)\

On vérifie que ce crochet munit g d'une structure d'algèbre de Leibniz. Cette

construction apparaît naturellement dans le travail de Baues et Conduché

[B-C] sur les modèles homotopiques minimaux. Elle est appelée «algèbre de

Lie partielle» et est obtenue comme série centrale descendante d'un module
pré-croisé de groupes. C'est un sous-exemple de 2.1.

2.7. Mécanismes hamiltoniens. (J.-L. Koszul [K2]). Soit g une
superalgèbre de Lie Z-graduée. On note glj} la composante de bidegré (i, y),
i e Z/2Z, j e Z. Soit w e g| tel que [w, w] 0. On définit un crochet

[- -]w sur g_i par

[a, b]w := [a, [w, b]\

Ce crochet définit sur g_! une structure de super-algèbre de Leibniz (à

condition d'échanger les parités de g_i).

2.8. Formes différentielles (J.-L. Brylinski [B]). Soit X une variété
différentiable de dimension n et ri e Qn(X) une forme volume. On note g

l'algèbre de Lie des champs de vecteurs E, sur X tels que i5f(£). r| 0.

L'application \\r: g Q"~l(X)ci, E, h» /(£). q dans les formes fermées est un
isomorphisme qui permet de munir Qln~1(X)c[ d'une structure d'algèbre de

Lie, dont dQn~2(X) est une sous-algèbre de Lie. On définit alors un crochet

sur Çïn~2{X) par

[et, ß] := a)).ß

qui munit Qn~2(X) d'une structure d'algèbre de Leibniz gauche. Notons que
la suite

0 Q"~2(X)C/ Q"~2(X) dQn~2(X) 0

est une extension centrale antisymétrique d'algèbres de Leibniz (cf. 4.3).


	2. Exemples d'algèbres de Leibniz

