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penser que si la théorie HL existe pour les groupes, alors il existe une classe
plus vaste d’objets (coquecigrues) sur laquelle elle est définie. Tout reste a faire
dans cette direction.

Dans toute la suite k est un anneau commutatif. On sera amené parfois
a supposer que c’est un corps.

1. ALGEBRES DE LEIBNIZ

Par définition une algébre de Leibniz droite sur k est la donnée d’un
k-module g muni d’une application bilinéaire (crochet)

[_ ’ _]: g X g -t g
satisfaisant & la relation de Leibniz droite
(L) [x [».z]] =[x y].z] — [[xzl,y], pourtout x y,ze€g.

(Si ’on pense a I’opération [—, z] comme a une dérivation (—)’, on obtient
précisément (xy) = x'y + xy’).
Pour une algebre de Leibniz gauche la relation de Leibniz gauche est

(L") [[x, ¥1,2] = [x [» 2]] = [>. [x 2]] .
On remarquera que, lorsque le crochet est anticommutatif, i.e.
[x, 1 = — [y, x], chacune de ces relations est équivalente a la relation de

Jacobi (J), puisque (L) (resp. (L")) consiste a réécrire (J) en mettant x a la
premieére place (resp. z a la derniere place) dans chaque terme.

On remarquera que si le crochet [—, —] vérifie (L) alors le crochet
[—, —1', défini par [x, y]’ = [y, x], vérifie (L"). Il y a donc équivalence entre
algebres de Leibniz gauches et algebres de Leibniz droites.

Un morphisme d’algebres de Leibniz est la donnée d’un homomorphisme
de k-modules f:g— g’ tel que

SUxyD =), f(»)], pourtout x,yegqg.

Dans toute la suite on dira simplement algébre de Leibniz, pour algébre
de Leibniz droite.

Notons tout de suite une conséquence immédiate de la relation (L).
Bien que dans une algebre de Leibniz on n’ait pas, en général, 1’égalité
[¥,z] = — [z, ], on a par contre

(1.1) [x,[»,z]] = [x, — [z, »]], pourtout x,y,zeq.

I suffit de comparer (L) pour X, y, z et pour X, z, ¥, pour s’en convaincre.
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