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penser que si la théorie HL existe pour les groupes, alors il existe une classe

plus vaste d'objets (coquecigrues) sur laquelle elle est définie. Tout reste à faire

dans cette direction.
Dans toute la suite k est un anneau commutatif. On sera amené parfois

à supposer que c'est un corps.

1. Algèbres de Leibniz

Par définition une algèbre de Leibniz droite sur k est la donnée d'un
^-module g muni d'une application bilinéaire (crochet)

[- -]: 0 x g-+g

satisfaisant à la relation de Leibniz droite

{L) [x,[y,z]] [[x,y],z]-[[X, z],ypourtout g

(Si l'on pense à l'opération [-,z] comme à une dérivation (-)', on obtient
précisément (xy)' x'y + xy').

Pour une algèbre de Leibniz gauche la relation de Leibniz gauche est

(L') [[x, y],z][x, [y, z]] [y, [x, z]]

On remarquera que, lorsque le crochet est anticommutatif, i.e.

[x, y] - [y, x], chacune de ces relations est équivalente à la relation de

Jacobi (/), puisque (L) (resp. ÇL')) consiste à réécrire (/) en mettant x à la

première place (resp. z à la dernière place) dans chaque terme.
On remarquera que si le crochet [- -] vérifie (L) alors le crochet

[- -]', défini par [x, y]' [y, x], vérifie (.V). Il y a donc équivalence entre
algèbres de Leibniz gauches et algèbres de Leibniz droites.

Un morphisme d'algèbres de Leibniz est la donnée d'un homomorphisme
de ^-modules /: g - g' tel que

f([x, y]) [/(*), f(y)], pour tout xje g

Dans toute la suite on dira simplement algèbre de Leibniz, pour algèbre
de Leibniz droite.

Notons tout de suite une conséquence immédiate de la relation (L).
Bien que dans une algèbre de Leibniz on n'ait pas, en général, l'égalité
[y> z] - [z, y], on a par contre

(1.1) [x, [y, z]] [x, - [z, y]], pour tout x, y, z e g

Il suffit de comparer (L) pour x, y, z et pour x, z, y, pour s'en convaincre.
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