
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE VERSION NON COMMUTATIVE DES ALGÈBRES DE LIE: LES
ALGÈBRES DE LEIBNIZ

Autor: Loday, Jean-Louis

DOI: https://doi.org/10.5169/seals-60428

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-60428
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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UNE VERSION NON COMMUTATIVE DES ALGÈBRES DE LIE:
LES ALGÈBRES DE LEIBNIZ

par Jean-Louis Loday

Une algèbre de Leibniz g sur un anneau commutatif k est la donnée d'un

Â:-module g muni d'une application bilinéaire

[- -1 : g x g-+g

vérifiant la relation (dite de Leibniz)

(L) [x, [y, z]\ ~ [[y, y], z] + [[x, z],y] 0 pour tout x, y, z e Q

Notons que si, de plus, le crochet satisfait à la relation

(S) [x, x] 0 pour tout xeg,
alors la relation (.L) est équivalente à la relation de Jacobi classique

(/) [x, [y, z]\+ [y, [z, x]] + [z, [x, - 0

et g n'est rien d'autre qu'une algèbre de Lie. Ainsi les algèbres de Leibniz sont

une version non commutative (plus exactement non anti-symétrique) des

algèbres de Lie.
La principale motivation pour étudier cette notion est l'existence d'une

théorie d'homologie HL* (ainsi que d'une théorie de cohomologie E/L*), pour
les algèbres de Leibniz. Resteinte aux algèbres de Lie cette théorie donne de

nouveaux invariants qui sont intimement reliés à des notions plus classiques

telles que l'homologie (de Chevalley-Eilenberg) des algèbres de Lie, l'homo-
logie de Hochschild, l'homologie des espaces de lacets (modèle de James).

On se propose dans cet article de présenter, sans démonstrations, quelques
constructions et résultats concernant les algèbres de Leibniz et leur théorie de

(co)homologie, notamment leurs relations avec l'algèbre homologique et la
topologie algébrique classiques.

Après avoir donné différentes définitions on présente plusieurs exemples
d'algèbres de Leibniz et on expose les points suivants:
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— Dérivations. On définit une notion de dérivation pour les algèbres de

Leibniz (appelée en fait bidérivation pour éviter les confusions). L'ensemble
de ces bidérivations forme une algèbre de Leibniz et la notion de bidérivation
intérieure donne un morphisme de l'algèbre de Leibniz dans ses bidérivations.

— Représentations. De même que la notion de module sur les algèbres
associatives et commutatives se scinde en module à droite et module à gauche,
la notion de représentation d'une algèbre de Lie se scinde en représentation
et coreprésentation.

— Algèbre enveloppante. Cette notion existe aussi dans le cadre des

algèbres de Leibniz et permet d'interpréter les catégories de représentations et

coreprésentations comme des catégories de modules.

— Cohomologie et Homologie. C'est peut-être le point le plus important
car même appliquées aux algèbres de Lie ces théories de cohomologie et

d'homologie sont nouvelles et reliées aux objets classiques de l'algèbre
homologique. De plus elle sont interprétables en termes de foncteurs dérivés

grâce à la notion d'algèbre enveloppante. La propriété la plus caractéristique
de Phomologie de Leibniz est la formule de type Kiinneth

HL*(q® g') s HL*(Q)* HL*W)
où * est une sorte de produit tensoriel non commutatif de modules gradués.

— Liens avec la topologie algébrique. Jerry Lodder a mis à jour un lien
très étroit entre le complexe de Leibniz des matrices sur une algèbre de groupe
et le complexe cellulaire associé au modèle de James du classifiant de ce

groupe. Ce rapport peut se décrire grâce à une catégorie AS mêlant la catégorie

simpliciale À et les groupes symétriques (généralisation de la catégorie cyclique
de Connes). Ce point de vue peut être étendu pour définir Phomologie de

Leibniz des algèbres associatives tressées (liées aux groupes quantiques).
Les algèbres de Leibniz différentielles graduées permettent de définir un

modèle pour l'homotopie rationnelle non commutative. Il serait intéressant de

dégager un modèle «entier» (i.e. sur Z).

— HL dans d'autres contextes. Il est naturel de penser qu'une théorie de

type HL existe aussi pour d'autres catégories d'objets tels que les algèbres

associatives, les groupes, les espaces topologiques. On donne quelques

indications sur le cas des algèbres associatives (en liaison avec les travaux de

Cuntz et Quillen) ainsi que sur le cas des groupes (retombées attendues

en K-théorie algébrique).
De même que la théorie HL pour les algèbres de Lie est définie sur une

classe plus vaste d'objets, à savoir les algèbres de Leibniz, il est naturel de
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penser que si la théorie HL existe pour les groupes, alors il existe une classe

plus vaste d'objets (coquecigrues) sur laquelle elle est définie. Tout reste à faire

dans cette direction.
Dans toute la suite k est un anneau commutatif. On sera amené parfois

à supposer que c'est un corps.

1. Algèbres de Leibniz

Par définition une algèbre de Leibniz droite sur k est la donnée d'un
^-module g muni d'une application bilinéaire (crochet)

[- -]: 0 x g-+g

satisfaisant à la relation de Leibniz droite

{L) [x,[y,z]] [[x,y],z]-[[X, z],ypourtout g

(Si l'on pense à l'opération [-,z] comme à une dérivation (-)', on obtient
précisément (xy)' x'y + xy').

Pour une algèbre de Leibniz gauche la relation de Leibniz gauche est

(L') [[x, y],z][x, [y, z]] [y, [x, z]]

On remarquera que, lorsque le crochet est anticommutatif, i.e.

[x, y] - [y, x], chacune de ces relations est équivalente à la relation de

Jacobi (/), puisque (L) (resp. ÇL')) consiste à réécrire (/) en mettant x à la

première place (resp. z à la dernière place) dans chaque terme.
On remarquera que si le crochet [- -] vérifie (L) alors le crochet

[- -]', défini par [x, y]' [y, x], vérifie (.V). Il y a donc équivalence entre
algèbres de Leibniz gauches et algèbres de Leibniz droites.

Un morphisme d'algèbres de Leibniz est la donnée d'un homomorphisme
de ^-modules /: g - g' tel que

f([x, y]) [/(*), f(y)], pour tout xje g

Dans toute la suite on dira simplement algèbre de Leibniz, pour algèbre
de Leibniz droite.

Notons tout de suite une conséquence immédiate de la relation (L).
Bien que dans une algèbre de Leibniz on n'ait pas, en général, l'égalité
[y> z] - [z, y], on a par contre

(1.1) [x, [y, z]] [x, - [z, y]], pour tout x, y, z e g

Il suffit de comparer (L) pour x, y, z et pour x, z, y, pour s'en convaincre.
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2. Exemples d'algèbres de Leibniz

2.0. Algèbres de Lie. Il est clair d'après ce qu'on a dit précédemment

qu'une algèbre de Lie est un cas particulier d'algèbre de Leibniz. Si l'on
quotiente l'algèbre de Leibniz g par l'idéal bilatère engendré par les crochets

[x, x], x e g, on obtient une algèbre de Lie que l'on note gLie. Le morphisme
g g Lie est universel pour tout morphisme de g dans une algèbre de Lie. Son

noyau est noté ga/îL

2.1. Action pré-croisée. Soit g une algèbre de Lie et M un g-module. On

note mg l'action de g e g sur m e M. Soit \x: Mg une application linéaire

g-équivariante c'est-à-dire

\x(mg) [p(ra), g], Vm e M, Vg e g

Le crochet [ - - ] ' défini sur M par

[m, n) ' : Vm, n e M
munit M d'une structure d'algèbre de Leibniz. Constatons que p devient un
morphisme d'algèbres de Leibniz.

Remarquons que toute algèbre de Leibniz ï) peut être considérée comme

un I)Lie-module muni d'un ï)Lie-homomorphisme {) ï)Lie. Appliquée à cette

situation la procédure précédente redonne bien évidemment la structure

d'algèbre de Leibniz de départ de f).

2.2 Algèbre associative avec opérateur. Soit A une ^-algèbre associative

munie d'une application k-linéaire D:A -> A vérifiant

(*) D(a(Db)) Da Db D((Da)b), pour tout a, b e A

On définit alors un crochet sur A en posant

[a, b] : aDb - Db a

On vérifie que le /:-module A, muni de ce crochet est une algèbre de Leibniz

que l'on note AD. Il y a de nombreux exemples de telles situations.

De manière évidente D Id vérifie (*) et Aïd est l'algèbre de Lie classique

associée à une algèbre associative.

— Soit D:A~+A un endomorphisme d'algèbre tel que D2 D
(idempotent), alors (*) est vérifiée.

— Soit D:A~+A une dérivation de A de carré nul (D2 0). La

relation (*) est aussi vérifiée.
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2.3. Module tensoriel et algèbre de Leibniz libre [L-P].

Soit V un ^-module et T(V) F © F02 © © V®n © le module

tensoriel sur F quotienté par la partie de degré 0 k). On peut montrer qu il

existe une et une seule structure d'algèbre de Leibniz sur T{V) vérifiant

[x, y] x (g) u, pour tout x e t{V), v e F

L'algèbre de Leibniz Sf{V) ainsi définie est en fait l'algèbre de Leibniz libre

sur F, i.e. le foncteur S7 est adjoint à gauche du foncteur oubli des algèbres

de Leibniz dans les k-modules.

Notons que &(V)ut est l'algèbre de Lie libre sur F. L'application

canonique T{V) i?(F) 2d{V)ut est induite par

X\ © ® X,? l—> [[... [X\ ...], Xn - i ], xn ]

2.4. Complexe de Hochschild. Soit A une algèbre associative sur k et

considérons le bord de Hochschild

b\A ®kA ®kA -*A ®kA

ö(x©jf®z) =xy®z-x®yz + zx
© y •

Munissons le quotient A © H/Im b du crochet

[a © b, c © d] - {ab - ba) © {cd - de)

On vérifie que ce crochet est bien défini et satisfait à la relation (L). Donc

A © A/lm b est une algèbre de Leibniz (qui n'est pas une algèbre de Lie en

général). Si on munit A de sa structure d'algèbre de Lie usuelle, l'opérateur

b: A © y4/Im b A b{x © y) xy - yx,
devient un homomorphisme d'algèbres de Leibniz. Son noyau (resp. conoyau)
est le groupe d'homologie de Hochschild HHX {A) (resp. HH0(A)).

2.5. Basses dimensions. Si g est de dimension 1 sur k on a [x} x] ax
pour un certain a e k. C'est un crochet de Leibniz si et seulement si a2 0.

Donc si k est sans diviseurs de zéro, la seule structure d'algèbre de Leibniz
sur k est la structure abélienne. Si g est de dimension 2 engendrée par x et y
et si k est un corps, il y a 3 types d'algèbre de Leibniz suivant la structure
de qann.

— si dimqann 0, alors g est une algèbre de Lie,

— si dim gann 1 et si §ann est un module trivial sur gLie, alors g est

isomorphe à l'algèbre définie par

[x, x] [y, x] [x, y] 0 et [y, y] x ;
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— si dim Qann 1 et si gann est un module non trivial sur gLie, alors g est

isomorphe à l'algèbre définie par

[x, x] [yy x] 0, [x, y] x et [y, y] x

2.6. Algèbre de Lie partielle. Considérons deux algèbres de Lie gl5
et g0 munies d'homomorphismes dp. gj -> g0 et ^o*go~^0i vérifiant
d0s0 id d\Bo (par exemple le début d'une algèbre de Lie simpliciale).
Posons g Ker<ii et définissons un nouveau crochet [ - -]' sur g par:

[x,y]' [x,s0dQ(y)\

On vérifie que ce crochet munit g d'une structure d'algèbre de Leibniz. Cette

construction apparaît naturellement dans le travail de Baues et Conduché

[B-C] sur les modèles homotopiques minimaux. Elle est appelée «algèbre de

Lie partielle» et est obtenue comme série centrale descendante d'un module
pré-croisé de groupes. C'est un sous-exemple de 2.1.

2.7. Mécanismes hamiltoniens. (J.-L. Koszul [K2]). Soit g une
superalgèbre de Lie Z-graduée. On note glj} la composante de bidegré (i, y),
i e Z/2Z, j e Z. Soit w e g| tel que [w, w] 0. On définit un crochet

[- -]w sur g_i par

[a, b]w := [a, [w, b]\

Ce crochet définit sur g_! une structure de super-algèbre de Leibniz (à

condition d'échanger les parités de g_i).

2.8. Formes différentielles (J.-L. Brylinski [B]). Soit X une variété
différentiable de dimension n et ri e Qn(X) une forme volume. On note g

l'algèbre de Lie des champs de vecteurs E, sur X tels que i5f(£). r| 0.

L'application \\r: g Q"~l(X)ci, E, h» /(£). q dans les formes fermées est un
isomorphisme qui permet de munir Qln~1(X)c[ d'une structure d'algèbre de

Lie, dont dQn~2(X) est une sous-algèbre de Lie. On définit alors un crochet

sur Çïn~2{X) par

[et, ß] := a)).ß

qui munit Qn~2(X) d'une structure d'algèbre de Leibniz gauche. Notons que
la suite

0 Q"~2(X)C/ Q"~2(X) dQn~2(X) 0

est une extension centrale antisymétrique d'algèbres de Leibniz (cf. 4.3).
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3. Dérivations et bidérivations

3.1. Définitions. Soit g une algèbre de Leibniz. Une dérivation d: g - g

est une application k-linéaire qui vérifie

d([x, y]) [dx, y] + [x, dy], pour tout x, y e g

Une anti-dérivation D: g g est une application k-linéaire qui vérifie

D([x, y]) [Dx, y] - [Dy, x] pour tout x, y e g

Notons que si g est une algèbre de Lie il n'y a pas de différence entre dérivation

et anti-dérivation.
Par définition, une bidérivation de g est la donnée d'une dérivation d et

d'une anti-dérivation D qui vérifient en outre

(3.1.1) [x, dy] [x,Dy], pour tout x, y e g

3.2. Bidérivation intérieure. Pour tout x e g l'application ad(x) définie

par ad(x) (y) - [y, x] est une dérivation et l'application Ad(x) définie par

Ad(x)(y) [x, y] est une anti-dérivation. De plus, (ad(x), Ad(x)) est une

bidérivation (cf. 1.1) appelée la bidérivation intérieure associée à x.

3.3. L'algèbre de Leibniz Bider (g). L'ensemble des bidérivations de g

forme un /:-module que l'on munit d'un crochet en posant

|\(d, D), (d',D')\ (dd' - d'd, Dd' - d'D)

On peut montrer que, non seulement le membre de droite est bien une
bidérivation, mais de plus ce crochet vérifie la relation (L). On a ainsi construit
l'algèbre de Leibniz des bidérivations de g, que l'on note Bider (g). On vérifie
aisément que

g Bider (g), xh> (adx, Adx)

est un morphisme d'algèbres de Leibniz.

4. Extensions abéliennes d'algèbres de Leibniz et représentations

Une algèbre de Leibniz abélienne est tout simplement une algèbre de Lie
abélienne (i.e. [x, y] 0). Par définition une extension abélienne d'algèbres de
Leibniz est une suite d'algèbres de Leibniz

0->M-»l)->g->0
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qui est exacte et scindée en tant que suite de ^-modules et dans laquelle M est

une algèbre de Leibniz abélienne.

Cette suite exacte permet de définir deux actions de g sur M:

[- g x M-> M, [g, m] := [g,m\

[- -]: M x g - Af, [m, g] : [m, g]

Dans ces deux formules g est un relèvement de g e g dans ï) et le crochet de

droite est celui de I). La notation ne prête pas à confusion lorsqu'on sait dans

quelle algèbre se trouvent les variables.

La relation (L) du crochet de ï) implique que ces deux actions et le crochet
de g sont reliés par les relations

(MLL) [m, [x,y]][[m,x],y-
(LML) [x, [m, y]] [[x,m],y] - [[x, y], m]

(LLM) [x, [y, m]] [[x, y], m] - [[x, y]

pour tout m e M et tout x, y e g.

4.1. Définition. Pour toute algèbre de Leibniz g, une représentation
de g est la donnée d'un /:-module M et de deux applications bilinéaires

[-, — ] : g xM^Met [-, — ] : M x g M vérifiant les axiomes (MLL),
(LML) et (LLM).

Remarquons que le premier axiome ne fait intervenir que l'action à droite
de g sur M. Notons aussi que les deux derniers impliquent la relation

{ZD) [x, [y, m]] + [x, [m, y]] 0

4.2. Représentation adjointe. Il est clair que si l'on prend M g et que
l'on prend pour chacune des actions de g le crochet de g, on obtient une

représentation appelée la représentation adjointe.

4.3. Symétries. Une représentation M de g est dite symétrique si

[m, x] + [x, m] 0 pour tout m e M, x e g

Par exemple si g est une algèbre de Lie et M une représentation au sens des

algèbres de Lie, alors c'est une représentation symétrique au sens des algèbres

de Leibniz.
Une représentation M de g est dite antisymétrique si

[x, m] 0 pour tout m e M, x e g
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Il est clair que pour toute algèbre de Leibniz g le noyau gann (cf. 2.1) est une

représentation de l'algèbre de Leibniz gLie. C'est une représentation

antisymétrique.
Une représentation AL de g est dite triviale si elle est à la fois symétrique

et antisymétrique, c'est-à-dire

[x, m] 0 [m, x] pour tout m e M, x e g

4.4. Coreprésentations. Dans l'analogie avec les algèbres associatives,

les représentations sont l'analogue des modules à droite (voir ci-dessous

thm 5.2). La notion duale, c'est-à-dire l'analogue des modules à gauche, est

celle de coreprésentation.
Par définition une coreprésentation TV de l'algèbre de Leibniz g est la

donnée d'un ^-module et de deux actions [ —, - ] : g x TV -> TV et

TV x g TV vérifiant les axiomes suivants

(MLL)' [[x,y],m] [x, [y, m]] - [y, [x, m]]

(.LMLY [[y, [m, x]] [[y, m\,x] - [m, [x, y]]

(.LLMY [{m, x], y] [m, [x, y]] - [[y,m\,x]

pour tout m e TV et tout x, y e g.
Notons que les deux dernières relations impliquent la relation

(ZD)' [y, [m, x]] + [[m, x],y] 0

Il est clair que toute représentation d'une algèbre de Lie définit à la fois une

représentation et une coreprésentation au sens des algèbres de Leibniz.
Le produit tensoriel d'une coreprésentation TV et d'une représentation M

est le quotient de TV (g) k M par les relations

[n, x]® m - n® [x, m] et [x, n] (x) m ~ n (x) [m, x]

pour tout x e Q, n e N et m e M.

5. Algèbre enveloppante (cf. [L-P]).

La catégorie des représentations d'une algèbre de Leibniz donnée g est une
catégorie abéliennne. Il est naturel d'essayer de la représenter comme une
catégorie de modules sur une certaine algèbre, appelée algèbre enveloppante
de g.
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On construit cette algèbre enveloppante de la façon suivante. Considérons
deux copies de g notées g/ et gr pour les différencier. Les éléments de g' sont
notés lx, ceux de gr sont notés rX9 pour tout x e g. Rappelons que pour tout
/^-module V, T(V) désigne l'algèbre tensorielle k © V © V®2 © qui est

associative et unitaire. Dans r(g/©gr) on considère l'idéal bilatère /
engendré par les éléments

pour tout x,ye g.

5.1. Par définition Y algèbre enveloppante UL( g) de l'algèbre de Leibniz

g est le quotient

5.2. Théorème {cf. [L-P]). La catégorie des représentations (resp.

coreprésentations) de l'algèbre de Leibniz g est équivalente à la catégorie
des modules à droite (resp. à gauche) sur UL{g).

Il existe plusieurs homomorphismes permettant de comparer UL{g) à

l'algèbre enveloppante, au sens des algèbres de Lie, de gLie. Tout d'abord les

homomorphismes d'algèbres d0, dp. UL{g) -» t/(gLie) induits par

sont bien définis, puis, dans l'autre sens, l'homomorphisme
^(0Lie) UL{§), induit par s0(x) rx.

5.3. Proposition (cf. [L-P]). Les homomorphismes do,dx,so
ci-dessus vérifient

5.4. Exemple. Soit V k. x un module libre de rang 1 sur k engendré

par x. L'algèbre de Leibniz libre Sd(V) est isomorphe à k.x@k.x2
© • • • © k. xn © • • • équipé du crochet

j [x> x'] xi+l
\ [xfx1] =0 si j > 1

Notons que i?(K)ue est l'algèbre de Lie libre sur un générateur, i.e.
isomorphe à k. x (l'application quotient envoie xj sur 0, pour j > 1). L'algèbre

G) rix,y] ~ (rxfy - ryrx)
(ii) l[Xty} - (lxry - rylx)
(iü) (ry + ly)lx

UL(g) := T(§1 © %r)/I.

do (lx) 0

do(rx) x

d\ (lx) - x
d\(rx) x

doSo diSo id et (Ker d\) (Ker^/0) 0
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enveloppante (au sens Lie) de 2d(V)ue — k. x est 1 algèbre de

polynômes k [x].
L'algèbre enveloppante (au sens Leibniz) de âf(K) est isomorphe à

l'algèbre quotient de polynômes non commutatifs k(x,y)/{xy 0}. (Poser

rx + ix x, lx -y). Les applications dQ, dx et s0 sont données par

et SoCx) x y.

5.5. Poincaré-Birkhoff- Witt. On peut faire un traitement de UL en tous

points analogue à celui de U: filtration, théorème de PBWS algèbre

enveloppante d'un produit, etc. (cf. [L-P] pour PBW).

6. COHOMOLOGIE ET HOMOLOGIE D'UNE ALGÈBRE DE LEIBNIZ

Historiquement la notion d'algèbre de Leibniz est apparue de la façon
suivante. On sait que le calcul de l'homologie (à coefficients triviaux) d'une

algèbre de Lie g peut se faire à partir d'un complexe (de Chevalley-Eilenberg)
dont l'espace des ^-chaînes est A"g (produit extérieur n fois). J'ai montré,
premièrement, que l'on pouvait relever l'opérateur bord d: A"g -> A"-1 g en

un opérateur bord tfig^-^g®71-1, et, deuxièmement, que la démonstration
de d2 0 n'utilise que l'identité de Leibniz du crochet. Moralité: le nouveau
complexe est encore bien défini pour n'importe quelle algèbre de Leibniz.

En fait on va voir que l'on peut définir plus généralement des groupes
d'homologie d'une algèbre de Leibniz à coefficients dans une coreprésentation
et des groupes de cohomologie à valeurs dans une représentation. Ces groupes
peuvent s'interpréter en termes de foncteurs dérivés (Tor et Ext respectivement)
grâce à l'algèbre enveloppante UL(g).

6.1. Cohomologie d'une algèbre de Leibniz. Soit g une algèbre de

Leibniz et M une représentation de g. Le n-ième module des cochaînes de g
à valeurs dans M est

C"(g,M) : Hom*(g®",M), n > 0

On définit un opérateur d: C"(g,M) Cn + l(g, M) par
Sr-

d0(x) x

do(y) o

(cf. [LI], [C], [L-P])
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(df) (x,, xn+1) := [xi,/(x2 x„+1)]
n + 1

+ E (- 1)'[/(*1. •••, Xi,x„ + 1),x,]
i 2

+ E (- ...,X,_1, [X/TX,-], X/+1, ...,x„).
1 ^ i < i C n

On vérifie que d o d 0 grâce aux propriétés des crochets. On a donc un
complexe (C*(g,M), d) dont les groupes d'homologie sont notés

//L"(g, M), n ^ 0.

En basses dimensions on a les interprétations suivantes. Le groupe
//L°(g,M) est le sous-module de M des invariants à gauche, i.e.

{m e M \ [x, m] » 0, Vx eg}. Le groupe HLl(q, M) s'identifie au module
des dérivations de g à valeurs dans M, modulo les dérivations intérieures.

Comme on peut s'y attendre le groupe HL2{g, M) s'interprète en termes

d'extensions.

6.2. Théorème [L-P]. Pour toute algèbre de Leibniz g et toute
représentation M de g on note Ext (g, M) l'ensemble des classes

d'isomorphie d'extensions de g par M. On a alors un isomorphisme
naturel

Ext (g, M) HL2(g, M)

Le cas particulier où M est une représentation symétrique est déjà dans [C].
Puisque toute algèbre de Leibniz donne naissance à une extension abélienne

de conoyau gLie et de noyau gann, il existe un élément privilégié dans

HL2(gLie> 9ann) Que l'on appelle l'élément caractéristique de g.

6.3. Homologie d'une algèbre de Leibniz. Pour toute coreprésen-

tation TV de g on définit le module des «-chaînes de g à coefficients dans TV

par

C„(g, TV) TV (x) g®", n > 0

On définit un opérateur bord d: Cn(g, TV) C„_i(g, TV) par la formule

d„(m, X\, xn) ([m, X\], x2, x„)
n

+ E (-l)'([x/, m], Xi, x,x„)
f 2

+ E (- Xi, ...,Xi-i, [Xj,Xj],...,Xj,x„)
1 ^ / < j ^ n
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On vérifie que d o d — 0 grâce aux propriétés des crochets. On a donc un

complexe (C*(g, M), d) dont les groupes d'homologie sont notés

HL„(q, M), n ^ 0

6.4. Théorème [L-P]. Soit g une algèbre de Leibniz telle que g

et gLie soient libres en tant que k-modules. Alors pour toute
représentation M de g et toute coreprésentation N de g on a des

isomorphismes naturels

HL*(g,M) Ext*i(g)(t/(gLie), M)

HL*(q, N)Tor*i(9)(£/(gLie), N).
Dans ce théorème é/(gLie) est considéré comme un UL (g)-module à droite

via l'homomorphisme d0 décrit après le théorème 5.2. Le principe de la

démonstration consiste à construire une résolution libre JE* (g) du UL{g)-
module C/(gLie). La démonstration de l'acyclicité se fait grâce à des formules
de Cartan.

6.5. Homologie à coefficients dans la représentation adjointe.
Lorsque TV k est la représentation triviale, l'opérateur d s'écrit simplement

d(xi0 • • • (g) xn)

X (- 1)/+1 (xi ®® X/-1 ® 0 • • • ® (g) • • • ® x„)
1 ^i<j ^ n

C'est le complexe défini dans [Ll]. Si l'on prend maintenant TV g, à savoir
la représentation adjointe, et que l'on suppose que g est une algèbre de Lie,
alors la formule de 6.3 nous montre que l'on obtient, à un décalage près, le
même complexe que précédemment. On a ainsi un isomorphisme

HLn(g, g) HLn + l(g, k), n ^ 0

6.6. Comparaison avec Vhomologie d'une algèbre de Lie. Soit g une
algèbre de Lie et M un g-module. Lorsque g est considérée comme une algèbre
de Leibniz, M peut être considéré à la fois comme une représentation et comme
une coreprésentation. Par passage au quotient on définit un morphisme

C„(g, M) M® g®" M® A"g

qui commute aux opérateurs bords. En effet classiquement (cf. par
exemple [Kl]) l'opérateur bord du complexe donnant l'homologie d'une
algèbre de Lie à coefficients dans un module est
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d(m © Xi A • • ' AXn) Y, (- 1)/_1 lm> xi] ® X\ A • • • A X/ A * ' * AXn

+ Y, (- 1 )i+jm (x) [X/, Xj] A Xi A • • * A X, A ; * * A Xj A " ' A Xn
1 ^ / < j ^ n

On en déduit un homomorphisme naturel

HLn(q, M) -> Hn(Q, M)

De même, en cohomologie on a un homomorphisme naturel

Hn(q, M) HLn(Q, M)

6.7. Homologie d'une somme d'algèbres de Leibniz. Dans cette sous-
section on prend des coefficients triviaux et on note HLn{g) au lieu
de HLn{g, k). De plus on suppose que k est un corps.

On sait que pour des algèbres de Lie g et g' sur k, l'homologie de la somme
directe g © g' est donnée par la formule de Kiinneth (isomorphisme d'espaces

vectoriels gradués)

//*(g©g') //*(g)(x)//*(g').

Pour exprimer le résultat pour HL on a besoin de la construction suivante.

Le coproduitdans la catégorie de /:-algèbres associatives et unitaires, de R

et R" est noté R * R'. Soit M (resp. N) un /:-module N-gradué tel que M0 k
(resp. N0 k). On peut le considérer comme une algèbre associative et

unitaire en munissant l'idéal d'augmentation ©/>o^/ (resp. ©/>o^Vz) du

produit nul. L'unité de k M0 (resp. 7V0) est l'unité de cette algèbre. Il est

clair que M* TV, au sens précédent, est aussi une algèbre N-graduée augmentée.

On note (M*N)n la composante de degré n. On constate que

(M*N)q M0 © M) k,

(M* TV)! Mi® Nu
(M* TV)2 M2 © © N{) © (TV! © MO © M2

plus généralement (M*N)n s'exprime comme la somme des 2n composantes
du type Xix © Yh © Xh ©!©©••• où X M et Y TV, ou X TV et

F M, et Yjij n, ij ^ 1.

On remarque que si M T(V) et TV T(W), où F et W sont deux e.v.

sur ky on a alors

M*N T{V)*T{W) T(V® W)



ALGÈBRES DE LEIBNIZ 283

6.8. Théorème [L2]. Soit k un corps, g et g' deux algèbres de

Leibniz sur k. On a alors un isomorphisme d'espaces vectoriels gradués

HL*(Q@q') HL*(Q)*HL*(Q')

La démonstration de ce théorème utilise une variante algébrique de

l'intégrale itérée de Chen.

6.9. Structure de comonoïde. L'homologie classique d'une algèbre de

Lie admet une structure de cogèbre induite par la diagonale. Dans le cas des

algèbres de Leibniz HL*(g) admet une structure de comonoïde, i.e. la

diagonale induit un homomorphisme

A* : HL* (g) HL* (g) * HL* (g)

qui est coassociatif. L'existence de À* résulte du théorème précédent.

6.10. Théorie de la déformation. A toute catégorie «algébrique», par
exemple les algèbres associatives, les algèbres associatives et commutatives, les

algèbres de Lie, est associée une théorie de la déformation, qui est contrôlée

par une certaine théorie cohomologique. Dans les exemples ci-dessus on
trouve, en caractéristique zéro, la cohomologie de Hochschild, la cohomologie
de Harrison, André-Quillen) et la théorie de cohomologie classique des

algèbres de Lie (Chevalley-Eilenberg-Koszul) respectivement. On peut montrer
que pour les algèbres de Leibniz cette théorie cohomologique est
précisément HL* (cf. [R]).

7. Calculs de groupes d'homologie HL

On a déjà remarqué (cf. 6.5) que l'homologie à coefficients dans la
représentation adjointe est, à un décalage près, l'homologie à coefficients
triviaux.

Dans la suite on ne s'intéresse qu'aux coefficients triviaux et on note
HLn(g) au lieu de HLn(g, k).

7.1. Algèbre de Leibniz abélienne. Il est clair d'après la définition de
l'homologie, que si g est abélienne, alors HLn(g) g®", n ^ 0. L'homo-
morphisme de comparaison avec l'homologie classique est donc simplement le
passage au quotient g®" A"g. Ainsi les théories HL et H sur les algèbres
de Lie sont-elles distinctes dès que n ^ 2.
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En cohomologie on a HLn{g) Hom(g®w, k) dans le cas

abélien. Ainsi si g est de dimension 1 sur k (i.e. g k), alors HL2{k)
Hom (k®2,k) k.

7.2. Extensions centrales de sln{A). Soit A une algèbre associative
unitaire sur le corps k, et gln{A) (resp. sln{A)) son algèbre des matrices (resp.
des matrices de trace nulle). On peut montrer que pour tout n ^ 5 on a un
isomorphisme

HL2{sln(A)) HHX(A)

où HHfA) est le premier groupe d'homologie de Hochschild de A à

coefficients dans A. Cet isomorphisme est relié à l'algèbre de Leibniz
A (x)y4/Im£ (décrite en 2.4) par l'existence du diagramme commutatif

0 - HHM) -> A®A/\mb -* ->• 0

im ïi-
0 - HL2(sI„(A)) -» stlJA) - gln(A) -+ HL{ (gl„{A)) ^ 0

dans lequel le carré du milieu est un diagramme d'algèbres de Leibniz {cf. [L-P]

pour plus de détails).

7.3. Algèbres de Lie réductives. Soit k un corps de caractéristique zéro.

Pour toute algèbre de Lie semi-simple g sur k on a {cf. [N])

HLn{g) 0, n > 0

En particulier on a HLn{slr{k)) 0 pour tout n ^ 1 et donc

HLn{glr{k)) k pour tout n ^ 0.

7.4. Algèbre de Lie des matrices gl{A). On note par gl{A) la réunion

\jngln{A) des matrices sur A de taille finie quelconque. On suppose que k est

un corps de caractéristique 0. On a alors l'isomorphisme d'espaces vectoriels

gradués suivant ([C], [Ll]),

HL*{gl{A))= T(HH*-i{A))

où HH*{A) désigne l'homologie de Hochschild de A à coefficients dans A
et T est le foncteur module tensoriel. Le point principal de la preuve est dû

à C. Cuvier.

Remarquons que ce théorème est tout à fait cohérent avec les résultats

précédents (car HHn{k) 0 pour n > 0 par exemple).
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En fait on a des résultats plus précis pour gln{A) {cf. [C], [Ll]),

— les homomorphismes naturels

HLn(gin(A))^ HLn gl„+1 (>!)) *H„ (A))

sont des isomorphismes,

— si A est commutatif on a une suite exacte

(7.4.1) HLn(gln _,(A)) - HLn(A)) - - 0

où est l'e.v. des «-formes différentielles de Kähler de A sur k.

Lorsque A est commutatif et lisse nous conjecturons que HL*{glr{A))
peut se calculer à partir de la filtration par les X-opérations de Phomologie de

Hochschild:

HL,(glr (A)) T(®HHVh
i < r

cf. [Ll, 10.6.22] pour plus de détails. Le calcul de 7.3 montre que cette

conjecture est vraie pour A k.

7.5. Algèbre de Virasoro. L'algèbre de Lie g Der(C[z, z-1]) des

dérivations des polynômes de Laurent est parfaite (g [g, g]). Elle admet

donc une extension centrale universelle que l'on appelle l'algèbre de Virasoro.
Il se trouve que cette extension est aussi universelle dans la catégorie des

algèbres de Leibniz {cf. [L-P]). En termes cohomologiques ce résultat signifie
qu'il y a des isomorphismes

H\g) HL2{g) k et HL2{g) H2{g) k

7.6. Algèbre de Lie étendue (d'après V. Gnedbaye [Gn]^. Pour toute
algèbre de Lie g et toute algèbre unitaire associative et commutative A, le

produit tensoriel g (x) A est muni d'une structure d'algèbre de Lie. On peut
construire un morphisme naturel

HL* (g (x) A) - H* (C{A) ® U{q)ab, b ® 1)

où (C(H), b) est le complexe de Hochschild de A. Lorsque g est réductive et
parfaite on peut en déduire un isomorphisme

HL2{q0A) =HHfA)® S2(g)9

et un épimorphisme

HL3(g® A)-(HH-(A) (X) S2(g)0) ® (HH^ (A) ® S3(g)0)
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8. Liens avec la topologie algébrique

8.1. Modèle de James de QSBG (d'après J. Lodder [Lo]). Soit G un

groupe discret, BG son classifiant topologique, S2BG la double suspension
réduite d'icelui et enfin QSBG l'espace de lacets de cette suspension. Il
est bien connu que l'homologie de ce dernier espace se calcule grâce à

l'isomorphisme

(8.1.1) H*(QS2BG) T(H* _ (G))

où H* désigne l'homologie réduite (.H0 0, Ht Ht pour i > 0). D'autre
part l'homologie de Hochschild de l'algèbre de groupe k[G] se compare à

H*(G) grâce à l'existence d'une surjection naturelle

HH* _ i (k [G]) -»//*_! (G, k)

En prenant le module tensoriel de cette application et en utilisant les

isomorphismes (7.4.1) et (8.1.1) on obtient une surjection

HL*(gl(k[G})) ^>H*(QS2BG9 k)

Dans [Lo], J. Lodder a montré que l'on pouvait relever très explicitement cette

application au niveau des complexes de chaînes, à condition de remplacer
QSBG par son modèle de James

J(BG) H (BG)n/~
n

Dans cette interprétation chacun des complexes de chaînes se scinde en une

somme de sous-complexes. Le /-ième sous-complexe se présente comme le

complexe total d'un module /-simplicial et son homologie est précisément la

composante P.
Comme sous-produit de ce travail J. Lodder obtient une simplification de

la démonstration originale de l'isomorphisme (7.4.1).

8.2. Homologie des modules simpliciaux-symétriques. Il existe une
catégorie A S (cf. [F-L]) qui contient à la fois les morphismes de la catégorie simpli-
ciale À et les éléments des groupes symétriques Sn+1 AutAS[«]). Il existe

aussi un foncteur Àop -> ÄS9 qui est injectif sur l'ensemble des morphismes
de Aop. Les images des dégénérescences et des faces par ce foncteur sont:

'Sj ôy + 1 pour j 0,..., n - 1

< di 0/ pour i 0,..., n - 1

dn ^ OqCq où Co est le cycle (0 1 n) e Sn +1

cf. [Ll], §6.1.11.
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A tout foncteur M*. AS ~> (k — Mod) on peut associer un complexe de

Leibniz (M*, d) en posant

(8.2.1) d: £ (-lV'+1tf/(cLi - ci) +£ (-
0 <i<j 0 <j^n

où dt est la z-ième face décrite ci-dessus et c\ est le cycle (z z + 1 ...y) e Sn +1

AutA5 [n],
La relation d2 0 est une conséquence des relations, dans AS, entre les

morphismes de À et les éléments des groupes symétriques (cf. par exemple

[Ll], §E.6.1.7). On note HL*(M) l'homologie du complexe (M*, d).
Voici un exemple de module simplicial-symétrique. Soit A une algèbre

associative unitaire sur k. Le foncteur C(A): AS - (k - Mod) est défini par

[n] t-> A ®n +1 et

'

Si(a0,...9an) (flo,an) pour i 0,...,n + 1

- Gj(a0, (a0, ...,ajaj+1, pour y 0- 1

c|+1(a0, ...,an) (a0, ...,ai^uai+uai)ai+2) ...,an) pour z 0, ...,n - 1

On vérifie aisément que le complexe (C(A), d) est précisément le complexe de

Leibniz de A considérée comme une algèbre de Leibniz (en faifde Lie) pour
le crochet usuel [a, b\ ab - ba.

Un autre exemple est donné par le foncteur [n] &[£„ +1] (x) A +1

issu de la démonstration de l'isomorphisme (7.4.1).
En fait on n'a pas besoin de toute la catégorie AS pour définir (M*, d).

Il suffit de se limiter à la sous-catégorie AopS' décrite dans [Ll] p. 220.

Remarque. Il est naturel de s'interroger sur le rapport entre cette

généralisation non-commutative et la théorie quantique. Ces deux
généralisations sont orthogonales, mais on peut les réunifier en construisant des théories

de type Hochschild et de type Leibniz pour certains modules simpliciaux
tressés. On utilise alors la catégorie AB (cf. [F-L]) faite à partir de A et des

groupes de tresses. En particulier on peut appliquer ces théories au
foncteur [n]^> A®n + l, lorsque l'algèbre A est munie d'une matrice de

Yang-Baxter R: A 0 A -> A 0 A, satisfaisant certaines propriétés.

8.3. Homotopie rationnelle non-commutative. La catégorie homo-
topique des CIL-complexes simplement connexes est, rationnellement,
équivalente à la catégorie homotopique des Q-algèbres de Lie différentielles
graduées réduites. Il est alors naturel de considérer la catégorie homotopique
des Q-algèbres de Leibniz différentielles graduées réduites comme une théorie
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de Phomotopie rationnelle «non commutative». Ceci amène immédiatement

un certain nombre de questions naturelles: existence de modèles minimaux,
analogue non commutatif des cogèbres cocommutatives, analogue des groupes
simpliciaux {cf. 10 et 11), etc.

9. Homologie non commutative des algèbres associatives

Soit A une algèbre associative unitaire sur k. On suppose que k
contient Q. Les énoncés et conjectures qui suivent peuvent s'exprimer en

utilisant comme coefficients un A-bimodule M, mais, pour simplifier, on
prendra ici M A.

9.1. Rappel du cas classique {cf. par exemple [Ll]). Le complexe de

Hochschild (C*, b), où Cn A (x) A ®n, d'homologie HHn{A), possède les

propriétés suivantes. Pour tout A les idempotents eulériens permettent de

scinder Cn en

C„ C<0 © C<„2) © ©

(9.1.1) Si A est commutative, C*1' est un sous-complexe de C*, et son

homologie n'est autre que l'homologie de Harrison-André-Quillen.

(9.1.2) Si A est commutative et lisse sur k, alors HH^\A) 0 pour
n > 1 et HH\l){A) &lA/k. Pour l'homologie de Hochschild on a alors le

théorème de Hochschild-Kostant-Rosenberg:

HH,.(A) A a{H^(AQ*/k

où QA/k désigne le module des /z-formes différentielles de Kaehler.

(9.1.2) Le module est isomorphe à A (x) AnA (M (x) A"A dans la
version bimodule), et la restriction du bord de Hochschild b à aboutit
dans C{f~j1}. On a alors un diagramme commutatif:

r^{n) /-i{n -1)^ n n — l

II1 II1

A ® AM A®An~lA,
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dans lequel d est le bord de Chevalley-Eilenberg {cf. 6.6) pour la structure

d'algèbre de Lie de A donnée par [x3 y] xy - yx.

9.2. Conjecture pour le cas non commutatif. On conjecture qu'il existe

un complexe CL* (CL*(A), b), et donc des groupes d'homologie HL*(A),
ayant les propriétés suivantes.

(9.2.0) Il existe une application naturelle non triviale

p: HL*(A) -+ HH*{A)

(9.2.1) Pour tout n le module CLn admet une décomposition

CLn CL[l) © CLt2)© © CL[n)

Le complexe CL*' est un sous-complexe de CL*, et son homologie est

précisément Phomologie de Hochschild HHn(A) pour n ^ L

(9.2.2) Si l'algèbre associative et unitaire A est quasi-libre au sens de

Cuntz-Quillen {cf. [C-Q]), on sait que HHn{A) 0 pour n > 1, et que

HHi{A) A (x) {A/k). Adoptons les notations de Cuntz et Quillen:
QM := A (x) {A/k)®n («-formes différentielles non commutatives sur A).
La théorie HL devrait vérifier

HLM) Ta(H(1\A)) Q"A

(9.2.3) La composante CL^ devrait être isomorphe à A (x) A -" (plus
précisément M ® A®n dans la version bimodule), et on devrait avoir un
diagramme commutatif

CL[n) L CL(Ml)

l II l

A <S>A®"A©
où d est le bord de Leibniz pour la structure de Leibniz de A donnée par
[x,y] xy - yx.

9.3. Remarque. Il y a fort à penser que les groupes (A) sont en fait
définis sur une catégorie plus large que celle des algèbres associatives unitaires.
De même qu'une algèbre associative définit une algèbre de Lie, tout objet de
cette catégorie devrait définir une algèbre de Leibniz.



290 J.-L. LODAY

10. Homologie non commutative des groupes et F-théorie des corps

10.1. Théorie HL pour les groupes. Il semble tout à fait raisonnable de

penser qu'il existe une théorie HL pour la catégorie des groupes.
Voici quelques-unes des propriétés que l'on peut espérer des groupes

abéliens HLn(G) lorsque G est un groupe.

(a) HL0(G) Z, HLi (G) G/[G, G].

(b) Il existe une application naturelle

(p : HLn (G) -> Hn (G), 0.

(c) Si G est abélien #L„(GQ) (Gq)®" et l'application (p est le passage
au quotient

(Gq)®* -> A"(Gq)

(d) Pour deux groupes G et G' on a un isomorphisme d'espaces vectoriels
gradués

HL*(G X G')Q HL*(G)Q*HL*(G')q

où * est l'opération décrite en 6.7.

(e) Pour tout anneau A il existe un groupe abélien gradué KL* (A) tel que

HL*(GL(A))Q) T(KL*(A)q)

(f) Pour tout corps F on a

KL2(F) HL2(SL(F)) F* A Fx

Il est aussi raisonnable de conjecturer l'existence d'une transformation
naturelle KL*K* (=F-théorie algébrique) induisant un diagramme
commutatif

HL*(GL(A))q H* (GL (A))q

lb II1

T(KL*(A)q) - A(K*(A)q)

Remarquons que, rationnellement, la théorie KL serait complètement
déterminée par la théorie HL. Cette théorie KL devrait être reliée aux conjectures
de Lichtenbaum et Beilinson concernant le calcul de K*(F)Q, où F est un

corps, de la manière suivante.
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10.2. Les complexes T. Lichtenbaum et Beilinson conjecturent l'existence,

pour tout corps commutatif F, d'un complexe de groupes abéliens

TF(n) de longueur n - 1 :

rV(/2)i ~5> Fp(n)n

tel que

KP(F)Q © i7/(IV(>0)Q.
p n - i + 1

Pour n 1 on prend Tf(1)i Fx d'où K\ (F)q - (Fx)q Pour n - 2 Bloch

a construit un complexe

r>(2): ^2(F)^FX a Fx, [x] ^ (1 - x) ax

où ^2(F) est le groupe abélien libre sur Fx -{1}, modulo l'équation

fonctionnelle du dilogarithme

M - [y] +
y( 1 - x)

x(l - y)
+

1 - x
i -.y

~ o.

Pour n 3 un complexe rF(3) a été proposé par A. Goncharov [Go].

10.3. Comparaison avec le cas additif. Comparons ces conjectures avec

le problème analogue où l'on a remplacé le groupe linéaire (d'un corps) par
l'algèbre de Lie des matrices (d'une algèbre associative lisse). Il faut alors

remplacer la ^-théorie algébrique par l'homologie cyclique (car
rationnellement F[*(gl(A)) A(//C*_i(A)), cf. [L-Q]). L'analogue additif de

TF(n) est alors le complexe de de Rham tronqué
d 1 d d „ ir;(«):A-Q^- ••• -Q71 •

Autrement dit, rationnellement on a un isomorphisme

HCp-i(A) ÇlpAl/dQpA2®HpDR3{A)®HpA•••

Cette décomposition de l'homologie cyclique est la décomposition induite par
les ^-opérations (cf. [Ll]). C'est aussi ce que suppose la conjecture ci-dessus
reliant K et l'homologie de T.

Dans ce contexte l'homomorphisme composé

HHn-M)s +A,
qui est l'application naturelle de l'homologie de Hochschild dans l'homologie
cyclique, n'est autre que la restriction aux parties primitives de

<p : HLn(gl(Aj) ^ Hn(gl(Aj).
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Il est donc naturel de penser que, dans le contexte multiplicatif (i.e. GL),

le bon groupe TF{n) est KLn(F)

11. Intégrer les algèbres de Leibniz

Le problème consiste à définir des objets algébriques qui seraient aux
algèbres de Leibniz ce que les groupes sont aux algèbres de Lie. Ces objets
mythiques seront appelés, pour l'instant, des coquecigrues. Une coque-
cigrue G devrait être munie d'un «commutateur abstrait»
G x G - G ayant certaines des propriétés des commutateurs dans les groupes.
Les groupes seraient des cas particuliers de coquecigrues et toute coquecigrue
aurait un groupe universel associé Ggr. Les théories d'homologie HL* et de

cohomologie iLL* devraient s'étendre à la catégorie des coquecigrues et le

groupe HL2(G,A) classifierait les extensions, dans la catégorie des

coquecigrues, de G par A. En particulier il devrait y avoir au-dessus de

SLn(F) une coquecigrue universelle fournissant une extension de SLn(F) par
Fx a Fx pour n ^ 5.

L'une des relations attendues entre coquecigrues et algèbres de Leibniz est

la suivante. Les commutateurs abstraits définissent une série centrale
descendante dont le gradué associé est une algèbre de Leibniz (le crochet étant

induit par le commutateur abstrait). Une coquecigrue libre doit donner une
algèbre de Leibniz libre.

La catégorie homotopique des coquecigrues simpliciales devrait fournir un
modèle entier de la théorie de l'homotopie non commutative décrite en 8.3.

Une coquecigrue munie d'une structure de variété (avec quelques

compatibilités) serait un groupe de Leibniz, c'est-à-dire que l'espace tangent
aurait une structure d'algèbre de Leibniz (on peut rêver).
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