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UNE VERSION NON COMMUTATIVE DES ALGEBRES DE LIE:
LES ALGEBRES DE LEIBNIZ

par Jean-Louis LODAY

Une algébre de Leibniz g sur un anneau commutatif & est la donnée d’un
k-module g muni d’une application bilin¢aire

[-,-1:gXg—g
vérifiant la relation (dite de Leibniz)

(L) [x [» zll = [[x »1,z] + [[x.z],y] =0 pour tout x,y,z€4g.
Notons que si, de plus, le crochet satisfait a la relation

(S [x, x] =0 pourtout xeg,

alors la relation (L) est équivalente a la relation de Jacobi classique

(J) [x, [y, 21l + [, [z x]] + [z [x, »1] = 0,

et ¢ n’est rien d’autre qu’une algebre de Lie. Ainsi les algebres de Leibniz sont
une version non commutative (plus exactement non anti-symétrique) des
algébres de Lie.

La principale motivation pour étudier cette notion est I’existence d’une
théorie d’homologie HL (ainsi que d’une théorie de cohomologie HL*), pour
les algebres de Leibniz. Resteinte aux algébres de Lie cette théorie donne de
nouveaux invariants qui sont intimement reliés a des notions plus classiques
telles que I’homologie (de Chevalley-Eilenberg) des algébres de Lie, I’homo-
logie de Hochschild, ’homologie des espaces de lacets (mode¢le de James).

On se propose dans cet article de présenter, sans démonstrations, quelques
constructions et résultats concernant les algébres de Leibniz et leur théorie de
(co)homologie, notamment leurs relations avec 1’algébre homologique et la
topologie algébrique classiques.

Apres avoir donné différentes définitions on présente plusieurs exemples
d’algebres de Leibniz et on expose les points suivants:
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— Dérivations. On définit une notion de dérivation pour les algébres de
Leibniz (appelée en fait bidérivation pour éviter les confusions). L’ensemble
de ces bidérivations forme une algébre de Leibniz et la notion de bidérivation
intérieure donne un morphisme de ’algébre de Leibniz dans ses bidérivations.

— Représentations. De méme que la notion de module sur les algébres
associatives et commutatives se scinde en module a droite et module a gauche,
la notion de représentation’ d’une algébre de Lie se scinde en représentation
et coreprésentation.

— Algebre enveloppante. Cette notion existe aussi dans le cadre des
algebres de Leibniz et permet d’interpréter les catégories de représentations et
coreprésentations comme des catégories de modules.

— Cohomologie et homologie. C’est peut-étre le point le plus important
car méme appliquées aux algébres de Lie ces théories de cohomologie et
d’homologie sont nouvelles et reliées aux objets classiques de [’algébre
homologique. De plus elle sont interprétables en termes de foncteurs dérivés
grace a la notion d’algébre enveloppante. La propriété la plus caractéristique
de ’homologie de Leibniz est la formule de type Kiinneth

HL. (g ® qg') = HL.(g) *HL,(g") ,

ou * est une sorte de produit tensoriel non commutatif de modules gradués.

— Liens avec la topologie algébrique. Jerry Lodder a mis a jour un lien
trés étroit entre le complexe de Leibniz des matrices sur une algébre de groupe
et le complexe cellulaire associé au modele de James du classifiant de ce
groupe. Ce rapport peut se décrire grace a une catégorie AS mélant la catégorie
simpliciale A et les groupes symétriques (généralisation de la catégorie cyclique
de Connes). Ce point de vue peut étre étendu pour définir I’homologie de
Leibniz des algebres associatives tressées (liées aux groupes quantiques).

Les algébres de Leibniz différentielles graduées permettent de définir un
modeéle pour I’homotopie rationnelle non commutative. Il serait intéressant de
dégager un modéle «entier» (i.e. sur Z).

— HL dans d’autres contextes. 1l est naturel de penser qu’une théorie de
type HL existe aussi pour d’autres catégories d’objets tels que les algébres
associatives, les groupes, les espaces topologiques. On donne quelques
indications sur le cas des algébres associatives (en liaison avec les travaux de
Cuntz et Quillen) ainsi que sur le cas des groupes (retombées attendues
en K-théorie algébrique).

De méme que la théorie HL pour les algebres de Lie est définie sur une
classe plus vaste d’objets, a savoir les algebres de Leibniz, il est naturel de
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penser que si la théorie HL existe pour les groupes, alors il existe une classe
plus vaste d’objets (coquecigrues) sur laquelle elle est définie. Tout reste a faire
dans cette direction.

Dans toute la suite k est un anneau commutatif. On sera amené parfois
a supposer que c’est un corps.

1. ALGEBRES DE LEIBNIZ

Par définition une algébre de Leibniz droite sur k est la donnée d’un
k-module g muni d’une application bilinéaire (crochet)

[_ ’ _]: g X g -t g
satisfaisant & la relation de Leibniz droite
(L) [x [».z]] =[x y].z] — [[xzl,y], pourtout x y,ze€g.

(Si ’on pense a I’opération [—, z] comme a une dérivation (—)’, on obtient
précisément (xy) = x'y + xy’).
Pour une algebre de Leibniz gauche la relation de Leibniz gauche est

(L") [[x, ¥1,2] = [x [» 2]] = [>. [x 2]] .
On remarquera que, lorsque le crochet est anticommutatif, i.e.
[x, 1 = — [y, x], chacune de ces relations est équivalente a la relation de

Jacobi (J), puisque (L) (resp. (L")) consiste a réécrire (J) en mettant x a la
premieére place (resp. z a la derniere place) dans chaque terme.

On remarquera que si le crochet [—, —] vérifie (L) alors le crochet
[—, —1', défini par [x, y]’ = [y, x], vérifie (L"). Il y a donc équivalence entre
algebres de Leibniz gauches et algebres de Leibniz droites.

Un morphisme d’algebres de Leibniz est la donnée d’un homomorphisme
de k-modules f:g— g’ tel que

SUxyD =), f(»)], pourtout x,yegqg.

Dans toute la suite on dira simplement algébre de Leibniz, pour algébre
de Leibniz droite.

Notons tout de suite une conséquence immédiate de la relation (L).
Bien que dans une algebre de Leibniz on n’ait pas, en général, 1’égalité
[¥,z] = — [z, ], on a par contre

(1.1) [x,[»,z]] = [x, — [z, »]], pourtout x,y,zeq.

I suffit de comparer (L) pour X, y, z et pour X, z, ¥, pour s’en convaincre.
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2. EXEMPLES D’ALGEBRES DE LEIBNIZ

2.0. Algebres de Lie. 1l est clair d’aprés ce qu’on a dit précédemment
qu’une algebre de Lie est un cas particulier d’algébre de Leibniz. Si I’on
quotiente 1’algébre de Leibniz g par 1’idéal bilatére engendré par les crochets
[x, x], x € g, on obtient une alg¢bre de Lie que ’on note g, ,.. Le morphisme
g — ;. st universel pour tout morphisme de g dans une algebre de Lie. Son
noyau est noté gen.

2.1. Action pré-croisée. Soit g une algébre de Lie et M un g-module. On
note m? ’action de g € g sur m € M. Soit p: M — @ une application linéaire
g-équivariante c’est-a-dire

u(me) = [u(m),gl, VmeM,Vgegq.
Le crochet [—, —]" défini sur M par
[m,n]” := m*», Vm,neM,

munit M d’une structure d’algébre de Leibniz. Constatons que p devient un
morphisme d’algebres de Leibniz.

Remarquons que toute algébre de Leibniz f) peut &tre considérée comme
un §;;.-module muni d’un b, ,.-homomorphisme ) — b ;.. Appliquée a cette
situation la procédure précédente redonne bien évidemment la structure
d’algebre de Leibniz de départ de ).

2.2 Algeébre associative avec opérateur. Soit A une k-algebre associative
munie d’une application k-linéaire D: A — A vérifiant

(*) D(a(Db)) = DaDb = D((Da)b), pourtout a,beA.
On définit alors un crochet sur 4 en posant
[a,b] := aDb — Dba .

On vérifie que le k-module 4, muni de ce crochet est une algebre de Leibniz
que ’on note Ap. Il y a de nombreux exemples de telles situations.

De maniére évidente D = 1Id vérifie (*) et A4 est I’algebre de Lie classique
associée a une algébre associative.

— Soit D:A—> A un endomorphisme d’algebre tel que D? =D
(idempotent), alors (*) est vérifiée.

— Soit D: A — A une dérivation de A4 de carré nul (D?=0). La
relation (*) est aussi vérifiée.
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23, Module tensoriel et algébre de Leibniz libre [L-P].

Soit ¥ un k-module et T(V) VPV ..o Ver® ... le module
tensoriel sur V quotienté par la partie de degré 0 (= k). On peut montrer qu’il
existe une et une seule structure d’algébre de Leibniz sur T'(V) vérifiant

[x,v] = x®v, pourtout xE¢€ T(V), ve V.

I’algébre de Leibniz Z(V) ainsi définie est en fait I’algebre de Leibniz libre
sur V, i.e. le foncteur & est adjoint a gauche du foncteur oubli des algeébres
de Leibniz dans les k-modules.

Notons que (V). est 1’algébre de Lie libre sur V. L’application
canonique T(V) = Z(V) = Z(V)vi est induite par

X ® ... Qx,= [ [x1, ..., xn1], x4l -
2.4. Complexe de Hochschild. Soit A une algeébre associative sur k et
considérons le bord de Hochschild
b:AR AR A>ARLA,
bx®yR2)=xyR@z2-xQyz+2x =
Xy
Munissons le quotient A ® A4/Im b du crochet

[a @ b,c® d] = (ab— ba) ® (cd — dc) .

On vérifie que ce crochet est bien défini et satisfait a la relation (L). Donc
A ® A/Im b est une algébre de Leibniz (qui n’est pas une algeébre de Lie en
général). Si on munit A de sa structure d’algebre de Lie usuelle, I’opérateur

b:ARQA/Imb—-A, bxXRy) =xy—yx,

devient un homomorphisme d’algebres de Leibniz. Son noyau (resp. conoyau)
est le groupe d’homologie de Hochschild HH,(A) (resp. HH,(A)).

2.5. Basses dimensions. Si @ est de dimension 1 sur £ on a [x, x] = ax
pour un certain a € k. C’est un crochet de Leibniz si et seulement si a? = 0.
Donc si k est sans diviseurs de zéro, la seule structure d’algebre de Leibniz
sur k est la structure abélienne. Si g est de dimension 2 engendrée par x et y
et si k est un corps, il y a 3 types d’algébre de Leibniz suivant la structure
de gann.

— s1 dim g"" = 0, alors ¢ est une algébre de Lie,

— st dim g =1 et si g**" est un module trivial sur g;;., alors g est
isomorphe a I’algebre définie par

ox]l=[rxl=[xyl=0 e [yy]=x;
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— st dim g*"" = 1 et si g*"" est un module non trivial sur g, ,., alors g est
isomorphe a I’algebre définie par

[, x] =[».x]=0,[x,]=x e [yyl=x.

2.6. Algebre de Lie partielle. Considérons deux algeébres de Lie g,
et g, munies d’homomorphismes do, di: ¢, = g, et So: g, ¢, vérifiant
doso = 1d = d,sy (par exemple le début d’une algébre de Lie simpliciale).
Posons ¢ = Ker d; et définissons un nouveau crochet [—, —]’ sur ¢ par:

[x, 1" = [x, sodo ()] .
On vérifie que ce crochet munit g d’une structure d’algébre de Leibniz. Cette
construction apparait naturellement dans le travail de Baues et Conduché
[B-C] sur les modeles homotopiques minimaux. Elle est appelée «algébre de
Lie partielle» et est obtenue comme série centrale descendante d’un module
pré-croisé de groupes. C’est un sous-exemple de 2.1.

2.7.  Mécanismes hamiltoniens. (J.-L. Koszul [K2]). Soit g une super-
algebre de Lie Z-graduée. On note gj., la composante de bidegré (i, ),
ieZ/2Z, jeZ. Soit we g, tel que [w, w] = 0. On définit un crochet

[—-, =1, sur g_, par
[a, b]w ‘= [a: [Wa b]] .

Ce crochet définit sur g_; une structure de super-algebre de Leibniz (a
condition d’échanger les parités de ¢_).

2.8. Formes différentielles (J.-L. Brylinski [B]). Soit X une variété
différentiable de dimension n et n € Q"(X) une forme volume. On note ¢
I’algébre de Lie des champs de vecteurs & sur X tels que Z(€).n = 0.
L’application y: g = Q" 1(X)., £ = i(§) .n dans les formes fermées est un
isomorphisme qui permet de munir Q”~1(X)., d’une structure d’algébre de
Lie, dont dQ”~2(X) est une sous-algébre de Lie. On définit alors un crochet
sur Q7-2(X) par

[0, B] := ZL(y~1d(a)).B

qui munit Q”~2(X) d’une structure d’algebre de Leibniz gauche. Notons que
la suite

0~ Q-2(X), — Q"-2(X) > dQ"-2(X) — 0

est une extension centrale antisymétrique d’algebres de Leibniz (cf. 4.3).
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3. DERIVATIONS ET BIDERIVATIONS

3.1. Définitions. Soit g une algébre de Leibniz. Une dérivation d: g = g
est une application k-linéaire qui vérifie

d([x, »]) = [dx, y] + [x,dy], pourtout x,y€g.
Une anti-dérivation D: g — @ est une application k-linéaire qui vérifie
D([x,y]) = [Dx,y] — [Dy,x] pour tout x,ye€g.

Notons que si g est une algébre de Lie il n’y a pas de différence entre dérivation
et anti-dérivation.

Par définition, une bidérivation de g est la donnée d’une dérivation d et
d’une anti-dérivation D qui vérifient en outre

(3.1.1) [x, dy] = [x, Dy], pourtout x,yegq.

3.2. Bidérivation intérieure. Pour tout x € g ’application ad(x) définie
par ad(x) (¥) = — [y, x] est une dérivation et ’application Ad(x) définie par
Ad(x) () = [x, y] est une anti-dérivation. De plus, (ad(x), Ad(x)) est une
bidérivation (cf. 1.1) appelée la bidérivation intérieure associée a X.

3.3. L’algébre de Leibniz Bider (g). L’ensemble des bidérivations de g
forme un k-module que I’on munit d’un crochet en posant

[d, D),(d",D")] =(dd’"—d'd, Dd’' — d’'D) .

On peut montrer que, non seulement le membre de droite est bien une
bidérivation, mais de plus ce crochet vérifie la relation (L). On a ainsi construit
’algébre de Leibniz des bidérivations de g, que I’on note Bider (g). On vérifie
aisément que

g — Bider(g), xt (adx, Adx)

est un morphisme d’algébres de Leibniz.

4. EXTENSIONS ABELIENNES D’ALGEBRES DE LEIBNIZ ET REPRESENTATIONS

Une algebre de Leibniz abélienne est tout simplement une algébre de Lie
abelienne (i.e. [x, y] = 0). Par définition une extension abélienne d’algébres de
Leibniz est une suite d’algébres de Leibniz

O——)M—)b—)g—)(}
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qui est exacte et scindée en tant que suite de k-modules et dans laquelle M est
une algebre de Leibniz abélienne.
Cette suite exacte permet de définir deux actions de ¢ sur M:

[—s _]: QXM_’M, [g)m] = [gam] s
[_: _]: M X Q—’M,[m;g] ‘= [mygl .

Dans ces deux formules g est un relévement de g € g dans |y et le crochet de
droite est celui de f). La notation ne préte pas a confusion lorsqu’on sait dans
quelle algébre se trouvent les variables.

La relation (L) du crochet de fy implique que ces deux actions et le crochet
de ¢ sont reliés par les relations

(MLL) [m, [x, y1] = [[m, x1, y] — [[m, 1, x]
(LML) [x, [m, ¥1] = [[x, m], y] = [[x, y1, m]
(LLM) [x, v, m]] = [[x, y1, m] — [[x, m], y]

pour tout m € M et tout x, y € g.

4.1. Définition. Pour toute algebre de Leibniz ¢, une représentation
de g est la donnée d’un k-module M et de deux applications bilinéaires
[—, ~ligXM->Met [-,—-]: M X g—> M vérifiant les axiomes (MLL),
(LML) et (LLM).

Remarquons que le premier axiome ne fait intervenir que 1’action a droite
de g sur M. Notons aussi que les deux derniers impliquent la relation

(ZD) [x, [y, m]] + [x, [m, 1] =0 .
4.2. Représentation adjointe. 1l est clair que si ’on prend M = ¢ et que

I’on prend pour chacune des actions de ¢ le crochet de g, on obtient une
représentation appelée la représentation adjointe.

4.3. Symétries. Une représentation M de @ est dite symétrique si
[m,x] + [x, mM] =0 pourtout meM,xeq.

Par exemple si g est une algebre de Lie et M une représentation au sens des
algeébres de Lie, alors c’est une représentation symétrique au sens des algeébres
de Leibniz.

Une représentation M de ¢ est dite antisyméirique si

[x, mM] =0 pourtout meM,xegqg.
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Il est clair que pour toute algébre de Leibniz g le noyau g%"" (¢f. 2.1) est une
représentation de 1’algébre de Leibniz g;;,. C’est une représentation
antisymétrique.

Une représentation M de g est dite triviale si elle est a la fois symétrique
et antisymétrique, c’est-a-dire

[x, m] =0 =[m,x] pourtout meM,x€eg.

4.4. Coreprésentations. Dans I’analogie avec les algébres associatives,
les représentations sont 1’analogue des modules a droite (voir ci-dessous
thm 5.2). La notion duale, c’est-a-dire 1’analogue des modules a gauche, est
celle de coreprésentation.

Par définition une coreprésentation N de 'algébre de Leibniz g est la

donnée dun k-module et de deux actions [—,-]:gX N> N et
[—, —1: N x g — N vérifiant les axiomes suivants

(MLL)' [[x, ¥1, m] = [x, [y, m]] — [y, [x, m]]

(LML)’ [[y, [m, x]] = [y, m],x] = [m, [x, 1]

(LLM)’ [[m: X],y] = [m, [X, y]] - [[y) m],X] ’

pour tout m € N et tout x, y € g.
Notons que les deux derniéres relations impliquent la relation

(ZD)’ [y, Im, x]] + [[m, x],y] =0.

I1 est clair que toute représentation d’une algébre de Lie définit a la fois une
représentation et une coreprésentation au sens des algébres de Leibniz.

Le produit tensoriel d’une coreprésentation N et d’une représentation M
est le quotient de N ® , M par les relations

[, x] ®m~n®[x,m] e [x,n]&®m~n [m,x]

pour tout x € g, n € N et m € M.

5. ALGEBRE ENVELOPPANTE (cf. [L-P]).

La catégorie des représentations d’une algebre de Leibniz donnée ¢ est une
catégorie abéliennne. Il est naturel d’essayer de la représenter comme une

catégorie de modules sur une certaine algebre, appelée algébre enveloppante
de g.
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On construit cette algebre enveloppante de la fagon suivante. Considérons
deux copies de g notées g’/ et g” pour les différencier. Les éléments de g’ sont
notés /., ceux de ¢” sont notés r,, pour tout x € ¢. Rappelons que pour tout
k-module V, T(V) désigne 1’algébre tensorielle k @ V@ VO2 @ ..., qui est
associative et unitaire. Dans 7(g’@® ¢g”) on considére I’idéal bilatére 7
engendré par les éléments

(1) r[x,y]_(rxry'"ryrx)
(i) Ly — Uery — 1yly)
() (r, + 1)1

pour tout x, y € g.

5.1. Par définition ’algébre enveloppante UL (g) de I’algébre de Leibniz
g est le quotient

UL(g) := T(g'®g")/1.

5.2. THEOREME (c¢f. [L-P]). La catégorie des représentations (resp.
coreprésentations) de l’algébre de Leibniz ( est équivalente a la catégorie
des modules a droite (resp. a gauche) sur UL(g).

Il existe plusieurs homomorphismes permettant de comparer UL(g) a
I’algébre enveloppante, au sens des algebres de Lie, de g;,.. Tout d’abord les
homomorphismes d’algebres dy, d,: UL(g) = U(g,,.) induits par

do(lx) =0 di(ly) = —x

do(’"x)"—‘)z CZI(")C):)Z
sont bien définis, puis, dans DPautre sens, I’homomorphisme
So: U(8 1) = UL(g), induit par so(X) = r,.

5.3. PROPOSITION (c¢f. [L-Pl). Les homomorphismes d,, d,, sy
ci-dessus vérifient

doSo = d]So = id et (Ker dl) (Ker do) =0.

5.4. Exemple. Soit V = k.x un module libre de rang 1 sur £ engendré
par x. L’algébre de Leibniz libre <Z(V) est isomorphe a k.x® k. x2
@ PDPk.x"® --- équipé du crochet

[x, xi] = xi+1
[x/,x']=0 sij>1.

Notons que Z(V)rj est ’algébre de Lie libre sur un générateur, i.e. iso-
morphe a k. x (I’application quotient envoie x/ sur 0, pour j > 1). L’algébre
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enveloppante (au sens Lie) de Z(V)rie = k.x est lalgébre de poly-
nomes k[x].

I’algébre enveloppante (au sens Leibniz) de ZL(V) est isomorphe a
I’algébre quotient de polyndmes non commutatifs k{(x, y)/{xy = 0}. (Poser

r.+ 1. =x,1,= —y). Les applications do, d; et so sont données par
do(x) = x {a’l(x) =0
do(¥) =0 di(y)=x

et so(x) =x + .

5.5. Poincaré-Birkhoff-Witt. On peut faire un traitement de UL en tous
points analogue a celui de U: filtration, théoreme de PBW, algebre
enveloppante d’un produit, etc. (¢f. [L-P] pour PBW).

6. COHOMOLOGIE ET HOMOLOGIE D’UNE ALGEBRE DE LEIBNIZ
(cf. [L1], [C], [L-P])

Historiquement la notion d’algébre de Leibniz est apparue de la fagon
suivante. On sait que le calcul de ’homologie (a coefficients triviaux) d’une
algébre de Lie g peut se faire a partir d’un complexe (de Chevalley-Eilenberg)
dont ’espace des n-chaines est A" (produit extérieur n fois). J’ai montré,
premiérement, que ’on pouvait relever ’opérateur bord d: A"g > A"~ !g en
un opérateur bord d: g®" — g®7-1, et, deuxiémement, que la démonstration
de d? = 0 n’utilise que I’identité de Leibniz du crochet. Moralité: le nouveau
complexe est encore bien défini pour n’importe quelle algébre de Leibniz.

En fait on va voir que I’on peut définir plus généralement des groupes
d’homologie d’une algebre de Leibniz a coefficients dans une coreprésentation
et des groupes de cohomologie a valeurs dans une représentation. Ces groupes
peuvent s’interpréter en termes de foncteurs dérivés (Tor et Ext respectivement)
grace a l’algebre enveloppante UL (g).

6.1. Cohomologie d’une algébre de Leibniz. Soit ¢ une algébre de

Leibniz et M une représentation de g. Le n-iéme module des cochaines de g
a valeurs dans M est

C"(Q,M) = Homk(g®nsM)an = 0.
On définit un opérateur d: C"(g, M) = C"+1(g, M) par
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(df) X1y eoey Xna1) 1= [x1, fO2, ooy Xnii)]
n+1

+ E (— l)i[f(xl’ sy -)%ia vy xn+l)) X,‘]
i=2

+ Y (m DIy ey Xio 1y X X1, Xists oees Xjy ooes Xn).
1<i<j<n
On vérifie que d © d = 0 grace aux propriétés des crochets. On a donc un
complexe (C*(g, M), d) dont les groupes d’homologie sont notés
HL"(g, M), n > 0.

En basses dimensions on a les interprétations suivantes. Le groupe
HL°(g, M) est le sous-module de M des invariants & gauche, i.e.
{meM|[x, m] =0,Vxeq}. Le groupe HL!(g, M) s’identifie au module
des dérivations de g a valeurs dans M, modulo les dérivations intérieures.

Comme on peut s’y attendre le groupe HL?(g, M) s’interprete en termes
d’extensions.

6.2. THEOREME [L-P]. Pour toute algébre de Leibniz ¢ et toute
représentation M de q on note Ext(g,M) [’ensemble des classes
d’isomorphie d’extensions de ¢ par M. On a alors un isomorphisme
naturel

Ext(g, M) = HL*(g, M) .

Le cas particulier ou M est une représentation symétrique est déja dans [C].

Puisque toute algébre de Leibniz donne naissance & une extension abélienne
de conoyau ¢;;. et de noyau g2"®, il existe un élément privilégié dans
HL?(g,.., %) que ’on appelle [’élément caractéristique de g.

6.3. Homologie d’une algebre de Leibniz. Pour toute coreprésen-
tation N de g on définit le module des n-chalnes de g a coefficients dans N
par

C,(g, N)=N®g®',n=0.
On définit un opérateur bord d: C,(g, N) = C,_(g, N) par la formule

d,(m, X1, ..., xp) = ([m, x11, X2, ..., Xp)

+ Z (— l)i([xi’ m]: X1y ooy 'Q‘I', vey xn)
i=2

. A
+ Y (=D m, Xy, e X [X X5 Xy e X))
1i<j<gn
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On vérifie que d o d = 0 grice aux propriétés des crochets. On a donc un
complexe (Cs(g, M), d) dont les groupes d’homologie sont notes

HL,(g, M), n=20.

6.4. THEOREME [L-P]. Soit ¢ une algebre de Leibniz telle que @
et Q,, soient libres en tant que k-modules. Alors pour toute repre-
sentation M de § et toute coreprésentation N de g on a des
isomorphismes naturels

HL*(g, M) = EXtZ‘JL(g)(U(QLie), M),
HL (g, N) = Tory"®(U(g i), N) -

Dans ce théoréme U(g,;.) est considéré comme un UL (g)-module a droite
via ’homomorphisme d, décrit apres le théoréme 5.2. Le principe de la
démonstration consiste a construire une résolution libre W, (g) du UL(g)-
module U(g;,.). La démonstration de ’acyclicité se fait grace a des formules
de Cartan.

6.5. Homologie a coefficients dans la représentation adjointe.
Lorsque N = k est la représentation triviale, I’opérateur d s’écrit simplement

dx1 ® & Xx,)
= Y D' ®®x kL x]l® 5 ® - ®X,) .

1<i<j<n
C’est le complexe défini dans [L1]. Si I’on prend maintenant N = g, a savoir
la représentation adjointe, et que 1’on suppose que g est une algébre de Lie,
alors la formule de 6.3 nous montre que 1’on obtient, a un décalage prés, le
meéme complexe que précédemment. On a ainsi un isomorphisme

HLn(gs g) = HLn+l(ga k)a n 2 0.

6.6. Comparaison avec [’homologie d’une algébre de Lie. Soit g une
algebre de Lie et M un g-module. Lorsque g est considérée comme une algébre
de Leibniz, M peut &tre considéré a la fois comme une représentation et comme
une coreprésentation. Par passage au quotient on définit un morphisme

Cr(g, M) =M ® ¢g®" > MR A"g

qui commute aux opérateurs bords. En effet classiquement (¢f. par
exemple [K1]) I'opérateur bord du complexe donnant I’homologie d’une
algebre de Lie a coefficients dans un module est
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dm@x A Ax) =Y (=D [m x] QXiAARiA -~ AXp
+ X DM@ I, X IAX A AR A AR A A,

1€i<j<gn

On en déduit un homomorphisme naturel
HL,(g, M) > H,(g, M) .
De méme, en cohomologie on a un homomorphisme naturel

H" (g, M)~ HL"(g, M) .

6.7. Homologie d’une somme d’algébres de Leibniz. Dans cette sous-
section on prend des coefficients triviaux et on note HL,(g) au lieu
de HL,(g, k). De plus on suppose que k est un corps.

On sait que pour des algebres de Lie g et g” sur k&, I’homologie de la somme
directe ¢ @ ¢’ est donnée par la formule de Kiinneth (isomorphisme d’espaces
vectoriels gradués)

H,(g®g') = He(g) ® Hy(g") .

Pour exprimer le résultat pour HL on a besoin de la construction suivante.
Le coproduit, dans la catégorie de k-algébres associatives et unitaires, de R
et R" est noté R * R’. Soit M (resp. N) un k-module N-gradué tel que M, = k
(resp. Ny = k). On peut le considérer comme une algebre associative et
unitaire en munissant 1’idéal d’augmentation @ ;- (M, (resp. @ ;- oN;) du
produit nul. L’unité de kK = M, (resp. Ny) est I’unité de cette algebre. Il est
clair que M * N, au sens précédent, est aussi une algebre N-graduée augmentée.
On note (M * N), la composante de degré n. On constate que

(M#*N)y=M;,&® Ny =k,
(M=*N), =M, ® N,
M=N),=M,® M, ® Nj) DN, ® M) ®M,,
plus généralement (M * N), s’exprime comme la somme des 2” composantes

du type X;, ® Vi, ® X;, ® Y;,® - ot X=Met Y=N, ou X=N et
Y=M, et Zjijzn,ijBI.

On remarque que si M = T (V) et N=T(W), ou Vet W sont deux e.v.
sur k, on a alors

M+N=TWV)*T(W)=TWV @ W) .
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6.8. THEORBME [L2]. Soit k un corps, g et Q' deux algébres de
Leibniz sur k. On a alors un isomorphisme d’espaces vectoriels gradués

HL.(g® ¢g') = HL«(g) * HL4(g") -

La démonstration de ce théoréme utilise une variante algébrique de
I’intégrale itérée de Chen.

6.9. Structure de comonoide. L’homologie classique d’une algebre de
Lie admet une structure de cogébre induite par la diagonale. Dans le cas des
algébres de Leibniz HL.(g) admet une structure de comonoide, i.e. la
diagonale induit un homomorphisme

Ax: HLy(g) > HL4(g) * HL+ ()

qui est coassociatif. L’existence de A4 résulte du théoreme précédent.

6.10. Théorie de la déformation. A toute catégorie «algébrique», par
exemple les algébres associatives, les algebres associatives et commutatives, les
algebres de Lie, est associée une théorie de la déformation, qui est contrdlée
par une certaine théorie cohomologique. Dans les exemples ci-dessus on
trouve, en caractéristique zéro, la cohomologie de Hochschild, la cohomologie
de Harrison, (= André-Quillen) et la théorie de cohomologie classique des
algebres de Lie (Chevalley-Eilenberg-Koszul) respectivement. On peut montrer
que pour les algebres de Leibniz cette théorie cohomologique est préci-
sément HL* (cf. [R]).

7. CALCULS DE GROUPES D’HOMOLOGIE HL

On a déja remarqué (cf. 6.5) que I’homologie & coefficients dans la
représentation adjointe est, & un décalage prés, ’homologie a coefficients
triviaux.

Dans la suite on ne s’intéresse qu’aux coefficients triviaux et on note
HL,(g) au lieu de HL, (g, k).

7.1.  Algébre de Leibniz abélienne. 1l est clair d’aprés la définition de
I’homologie, que si g est abélienne, alors HL,(g) = ¢®”, n > 0. L’homo-
morphisme de comparaison avec I’homologie classique est donc simplement le

passage au quotient g®” — A"q. Ainsi les théories HL et H sur les algebres
de Lie sont-elles distinctes dés que n > 2.
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En cohomologie on a HL"(g) = Hom(g®", k) dans le cas
abélien. Ainsi si g est de dimension 1 sur k (i.e. g = k), alors HL2(k)
= Hom(k®2, k) = k.

7.2. Extensions centrales de sl,(A). Soit A une algebre associative
unitaire sur le corps &, et g/, (A) (resp. s/, (A)) son algébre des matrices (resp.
des matrices de trace nulle). On peut montrer que pour tout » > 5 on a un

isomorphisme
HL,(sl,(A)) = HH,(A4) ,

ou HH{(A) est le premier groupe d’homologie de Hochschild de A a
coefficients dans A. Cet isomorphisme est relié a 1’algébre de Leibniz
A Q A/Im b (décrite en 2.4) par ’existence du diagramme commutatif

0 -~ HH(A) - AQA/Imb > A - HHy(4A) — 0
l= l l I=
0 = HL,(sl,(4) -~  stl,(4) - gl,(4) - HL(gl,(4) — 0

dans lequel le carré du milieu est un diagramme d’algebres de Leibniz (¢f. [L-P]
pour plus de détails).

7.3. Algebres de Lie réductives. Soit k un corps de caractéristique zéro.
Pour toute algébre de Lie semi-simple ¢ sur k£ on a (c¢f. [N])

HLn(g)ZO, n>0.

En particulier on a HL,(sl,(k)) =0 pour tout n>1 et donc
HL,(gl.(k)) = k pour tout n > 0.

7.4. Algebre de Lie des matrices gl(A). On note par g/(A) la réunion
U ,&l,(A) des matrices sur A de taille finie quelconque. On suppose que k est
un corps de caractéristique 0. On a alors I’isomorphisme d’espaces vectoriels
gradués suivant ([C], [L1]),

HL.(gl(A) = T(HHx-1(4)) ,

ou HH,(A) désigne ’homologie de Hochschild de A a coefficients dans A
et 7T est le foncteur module tensoriel. Le point principal de la preuve est di

a C. Cuvier.
Remarquons que ce théoreme est tout a fait cohérent avec les résultats
précédents (car HH,(k) = 0 pour n > 0 par exemple).
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En fait on a des résultats plus précis pour g/,(4) (¢f. [C], [L1]),

— les homomorphismes naturels
HL,(gl,(A)) = HL,(glys1(A)) = - = H,(gl(A))

sont des isomorphismes,

— si A est commutatif on a une suite exacte
(7.4.1) HL,(gl,_1(A)) = HL,(gl,(A) » Q}7; > 0

ol Q% ,, est e.v. des n-formes différentielles de Kéhler de A sur k.

Lorsque A est commutatif et lisse nous conjecturons que HL.(gl.(A))
peut se calculer a partir de la filtration par les A-opérations de ’homologie de
Hochschild:

HL(gl,(A) = T(® HHY-,(4) ,
i<r

cf. [L1, 10.6.22] pour plus de détails. Le calcul de 7.3 montre que cette
conjecture est vraie pour A = k.

7.5. Algébre de Virasoro. L’algébre de Lie g = Der(Clz, z']) des
dérivations des polyndmes de Laurent est parfaite (g = [g, g]). Elle admet
donc une extension centrale universelle que 1’on appelle I’algébre de Virasoro.
Il se trouve que cette extension est aussi universelle dans la catégorie des
algébres de Leibniz (cf. [L-P]). En termes cohomologiques ce résultat signifie
qu’il y a des isomorphismes

H?>(q) = HL?>(Q) =k et HL,(g)=H,(g)=k.

7.6. Algebre de Lie étendue (d’apres V. Gnedbaye [Gn]). Pour toute
algebre de Lie g et toute algebre unitaire associative et commutative A, le

produit tensoriel ¢ ® A est muni d’une structure d’algebre de Lie. On peut
construire un morphisme naturel

HL«(g ® A) = Hyx (C(A) @ U(®)as, bR 1) ,
ou (C(A), b) est le complexe de Hochschild de 4. Lorsque g est réductive et
parfaite on peut en déduire un isomorphisme
HL,(g ® A) = HH,(A) ® S%(g),
et un épimorphisme

HL;(g ® A) = (HH, (A) ® 5*(g)g) ® (HH; (A) ® S3(g),) -
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8. LIENS AVEC LA TOPOLOGIE ALGEBRIQUE

8.1. Modeéle de James de QSBG (d’aprés J. Lodder [Lo]). Soit G un
groupe discret, BG son classifiant topologique, S?BG la double suspension
réduite d’icelui et enfin QSBG P’espace de lacets de cette suspension. Il
est bien connu que I’homologie de ce dernier espace se calcule griace a
I’isomorphisme

(8.1.1) H.(QS?BG) = T(Hy_1(G)) ,

ou fl* désigne I’homologie réduite (f[o = ), I:I,- = H; pour i > 0). D’autre
part I’homologie de Hochschild de I’algébre de groupe k[G] se compare a
H, (G) grace a ’existence d’une surjection naturelle

HH, _,(k[G]) > Hy_,(G, k) .

En prenant le module tensoriel de cette application et en utilisant les
isomorphismes (7.4.1) et (8.1.1) on obtient une surjection

HL, (gl(k[G])) > H,(QS2BG, k) .

Dans [Lo], J. Lodder a montré que 1’on pouvait relever tres explicitement cette
application au niveau des complexes de chaines, a condition de remplacer
QSBG par son modele de James

J(BG) = 1 (BG)"/ ~ .

Dans cette interprétation chacun des complexes de chaines se scinde en une
somme de sous-complexes. Le i-iéme sous-complexe se présente comme le
complexe total d’un module i-simplicial et son homologie est précisément la
composante 7°.

Comme sous-produit de ce travail J. Lodder obtient une simplification de
la démonstration originale de ’isomorphisme (7.4.1).

8.2. Homologie des modules simpliciaux-symétriques. 1l existe une caté-
gorie AS (c¢f. [F-L]) qui contient a la fois les morphismes de la catégorie simpli-
ciale A et les éléments des groupes symétriques S,.; (= Autas[n]). Il existe
aussi un foncteur A°? — AS, qui est injectif sur I’ensemble des morphismes
de A°r. Les images des dégénérescences et des faces par ce foncteur sont:

s; = 8;,1 pour j=0,...,n—-1,
d;, — o; pour i=0,...,n—1,
d, coc; ou cpestlecycle (01...n) € Sy,

cf. [L1], §6.1.11.
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A tout foncteur M: AS — (k — Mod) on peut associer un complexe de
Leibniz (M, d) en posant
821 d:= Y (=Ditldicl,,—ch + ¥ (=1idoci+dac)),

0<i<j<n 0<j<n
ol d; est la i-iéme face décrite ci-dessus et c{ est lecycle ((ii+1...7) € Sp+1
= AutAS [n] .

La relation d? = 0 est une conséquence des relations, dans AS, entre les
morphismes de A et les éléments des groupes symétriques (cf. par exemple
[L1], §E.6.1.7). On note HL4 (M) I’homologie du complexe (Mx, d).

Voici un exemple de module simplicial-symétrique. Soit A une algébre asso-
ciative unitaire sur k. Le foncteur C(A4): AS — (k — Mod) est défini par
[n]> A®r+1 et

di(ag, ...,an) = (ag,...,a;_1,1,a;,...,a,) , pour i =0,...,n+ 1,
o;(agy....an) = (o, ..., qAjs1,...,0a,) , pour j =0,...,n—1,

i+ 1 =
C; (aOa -°-san) = (a09 s A 15 Qi 15y i 2y eny an) , pour I = 09 e il — 1.

On vérifie aisément que le complexe (C(A), d) est précisément le complexe de
Leibniz de A considérée comme une algeébre de Leibniz (en fait*de Lie) pour
le crochet usuel [a, b] = ab — ba.

Un autre exemple est donné par le foncteur [n]— k[S,.;] ® A®"+!
issu de la démonstration de I’isomorphisme (7.4.1).

En fait on n’a pas besoin de toute la catégorie AS pour définir (M, d).
Il suffit de se limiter a la sous-catégorie A°’S’ décrite dans [L1] p. 220.

Remarque. 11 est naturel de s’interroger sur le rapport entre cette
généralisation non-commutative et la théorie quantique. Ces deux généra-
lisations sont orthogonales, mais on peut les réunifier en construisant des théo-
ries de type Hochschild et de type Leibniz pour certains modules simpliciaux
tressés. On utilise alors la catégorie AB (c¢f. [F-L]) faite a partir de A et des
groupes de tresses. En particulier on peut appliquer ces théories au
foncteur [n]+— A®"+1  lorsque l’algébre A est munie d’une matrice de
Yang-Baxter R: 4 ® A > A ® A, satisfaisant certaines propriétés.

8.3. Homotopie rationnelle non-commutative. La catégorie homo-
topique des CW-complexes simplement connexes est, rationnellement,
équivalente a la catégorie homotopique des Q-algébres de Lie différentielles
graduées reduites. Il est alors naturel de considérer la catégorie homotopique
des Q-algebres de Leibniz différentielles graduées réduites comme une théorie
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de ’homotopie rationnelle «non commutative». Ceci améne immédiatement
un certain nombre de questions naturelles: existence de modéles minimaux,
analogue non commutatif des cogébres cocommutatives, analogue des groupes
simpliciaux (cf. 10 et 11), etc.

9. HOMOLOGIE NON COMMUTATIVE DES ALGEBRES ASSOCIATIVES

Soit A une algébre associative unitaire sur k. On suppose que K
contient Q. Les énoncés et conjectures qui suivent peuvent s’exprimer en
utilisant comme coefficients un A-bimodule M, mais, pour simplifier, on
prendra ici M = A.

9.1. Rappel du cas classique (cf. par exemple [L1]). Le complexe de
Hochschild (Cy, b), ou C, = A ® A®", d’homologie HH,(A), possede les
propriétés suivantes. Pour tout A les idempotents eulériens permettent de
-~ scinder C, en

C,=CVPeCc?P®..eoCcw".

(9.1.1) Si A est commutative, C{’ est un sous-complexe de Cy, et son
homologie n’est autre que ’homologie de Harrison-André-Quillen.

(9.1.2) Si A est commutative et lisse sur k, alors HH'"(4) = 0 pour
n>1et HH{"(4) = Q),,. Pour I’homologie de Hochschild on a alors le
théoréme de Hochschild-Kostant-Rosenberg:

HH.(A) = A (HY (A)) = Q%
ou Q7 ., désigne le module des n-formes différentielles de Kachler.
(9.1.3) Le module C est isomorphe 4 A ® A"A (M ® A"A dans la

version bimodule), et la restriction du bord de Hochschild b & C% aboutit

dans C"~". On a alors un diagramme commutatif:

b
CE,”) - cr-1

n—1

I I

AQAA > AQA" A,
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dans lequel d est le bord de Chevalley-Eilenberg (cf. 6.6) pour la structure
d’algebre de Lie de A donnée par [x, y] = xy — yx.

9.2. Conjecture pour le cas non commutatif. On conjecture qu’il existe
un complexe CLy = (CL«(A), b), et donc des groupes d’homologie HL«(A),
ayant les propriétés suivantes.

(9.2.0) 1l existe une application naturelle non triviale

w: HL.(A) > HH«(A) .

(9.2.1) Pour tout n le module CL, admet une décomposition
CL,=CLY®cLP®..®cL?.

Le complexe CLY’ est un sous-complexe de CL,, et son homologie est
précisément 1’homologie de Hochschild HH,(A) pour n > 1.

(9.2.2) Si I’algebre associative et unitaire A4 est quasi-libre au sens de
Cuntz-Quillen (c¢f. [C-Q]), on sait que HH,(A) =0 pour n > 1, et que
HH (A) = A® (A/k). Adoptons les notations de Cuntz et Quillen:
QA := AR (A/k)®" (n-formes différentielles non commutatives sur A).
La théorie HL devrait vérifier

HL,(A) = T,(HY(4)) = Q4 .

(9.2.3) La composante CLE{’) devrait étre isomorphe a 4 ® A®" (plus
précisément M & A®" dans la version bimodule), et on devrait avoir un
diagramme commutatif

cL > Loy
[ v I
A@A@n _d) A®A®”‘1,
ou d est le bord de Leibniz pour la structure de Leibniz de A donnée par

[x, y] = xy — yx.

9.3. Remarque. 1ly afort a penser que les groupes HL(A) sont en fait
définis sur une catégorie plus large que celle des algébres associatives unitaires.
De méme qu’une algébre associative définit une algébre de Lie, tout objet de
cette catégorie devrait définir une algébre de Leibniz.
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10. HOMOLOGIE NON COMMUTATIVE DES GROUPES ET K-THEORIE DES CORPS

10.1. Théorie HL pour les groupes. 1l semble tout a fait raisonnable de
penser qu’il existe une théorie HL pour la catégorie des groupes.

Voici quelques-unes des propriétés que ’on peut espérer des groupes
abéliens HL,(G) lorsque G est un groupe.

(a) HLy(G)=1Z, HL,(G) = G/[G, G].
(b) 1l existe une application naturelle
¢©:HL,(G) > H,(G), n>0.

(c) Si G est abélien HL,(Gq) = (Go)®" et ’application ¢ est le passage
au quotient

(Go)®" = A"(Gyg) .

(d) Pour deux groupes G et G’ on a un isomorphisme d’espaces vectoriels
gradués

HL«(G X G")o = HL+(G)q* HL+(G")q

ou * est ’opération décrite en 6.7.

(e) Pour tout anneau A il existe un groupe abélien gradué KL, (A4) tel que
HL4(GL(A))q) = T(KLx(A)q) -
(f) Pour tout corps F on a
KL,(F) = HL,(SL(F)) = F* A F* .

Il est aussi raisonnable de conjecturer I’existence d’une transformation
naturelle KL, — K, (= K-théorie algébrique) induisant un diagramme
commutatif

HL.«(GL(A))q — Hx«(GL(A))q
I I
T(KL«(A)q) — A(K«(A)o) .
Remarquons que, rationnellement, la théorie KL serait complétement déter-
minée par la théorie HL. Cette théorie KL devrait €tre reliée aux conjectures

de Lichtenbaum et Beilinson concernant le calcul de K (F)q, ou F est un
corps, de la maniére suivante.
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10.2. Les complexes T. Lichtenbaum et Beilinson conjecturent 1’exis-
tence, pour tout corps commutatif F, d’un complexe de groupes abéliens
I'=(n) de longueur n — 1:

Lr(n)y 2 Tp(n)y— -0 I'r(n),
tel que
K,(F)o= @ Hi(r(n)e-

p=n—-i+1

Pour n = 1 on prend I'»(1); = F*, d’o0 K| (F)q = (F*)q. Pour n = 2 Bloch
a construit un complexe

FF(Z):ﬁz(ﬂﬂFXAFX, [Xx]P (1 =x)AXx

ol %,(F) est le groupe abélien libre sur F* — {1}, modulo I’équation
fonctionnelle du dilogarithme

— 1 —
- ] 5] -
x(1-y) 1 -y

Pour n = 3 un complexe I'r(3) a été proposé par A. Goncharov [Go].

10.3. Comparaison avec le cas additif. Comparons ces conjectures avec
le probléme analogue ou ’on a remplacé le groupe linéaire (d’un corps) par
I’algebre de Lie des matrices (d’une algébre associative lisse). 11 faut alors
remplacer la K-théorie algébrique par I’homologie cyclique (car ration-
nellement H,(gl(4)) = A(HC«_1(A4)), cf. [L-Q]). L’analogue additif de
I'r(n) est alors le complexe de de Rham tronqué

+ 2 ~1 4 d ~n-1
I',(n):A—->Q,—=>---—=>Q, .
Autrement dit, rationnellement on a un isomorphisme
HC, 1(A) = Q47'/dQ%* @ Hy (A) @ HY P (A) @ -

Cette décomposition de ’homologie cyclique est la décomposition induite par

les A-opérations (c¢f. [L1]). C’est aussi ce que suppose la conjecture ci-dessus
reliant K et ’homologie de T.

Dans ce contexte ’homomorphisme composé
HH, (A)= Q% '»H,_ (Tl(n) SHC,_(A),

qui est I’application naturelle de ’homologie de Hochschild dans I’homologie
cyclique, n’est autre que la restriction aux parties primitives de

¢: HL,(gl(4)) = H,(gl(A)) .



292 J.-L. LODAY

Il est donc naturel de penser que, dans le contexte multiplicatif (i.e. GL),

le bon groupe T'rp(n) est KL,(F).

11. INTEGRER LES ALGEBRES DE LEIBNIZ

Le probleme consiste a définir des objets algébriques qui seraient aux
algebres de Leibniz ce que les groupes sont aux algébres de Lie. Ces objets
mythiques seront appelés, pour l’instant, des coquecigrues. Une coque-
cigrue G devrait étre munie d’un «commutateur abstraity [—, —]:
G X G — G ayant certaines des propriétés des commutateurs dans les groupes.
Les groupes seraient des cas particuliers de coquecigrues et toute coquecigrue
aurait un groupe universel associé G,,;. Les théories d’homologie HL, et de
cohomologie HL* devraient s’étendre a la catégorie des coquecigrues et le
groupe HL?*(G, A) classifierait les extensions, dans la catégorie des
coquecigrues, de G par A. En particulier il devrait y avoir au-dessus de
SL, (F) une coquecigrue universelle fournissant une extension de SL, (F) par
F* A F* pour n = 5.

L’une des relations attendues entre coquecigrues et algébres de Leibniz est
la suivante. Les commutateurs abstraits définissent une série centrale
descendante dont le gradué associé est une algebre de Leibniz (le crochet étant
induit par le commutateur abstrait). Une coquecigrue libre doit donner une
algébre de Leibniz libre.

La catégorie homotopique des coquecigrues simpliciales devrait fournir un
modele entier de la théorie de ’homotopie non commutative décrite en 8.3.

Une coquecigrue munie d’une structure de variété (avec quelques
compatibilités) serait un groupe de Leibniz, c’est-a-dire que 1’espace tangent
aurait une structure d’algebre de Leibniz (on peut réver).
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