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262 J.-P. ROSAY

of C belongs to the interior of the polynomial hull of I/ff, then C is
entirely included in the interior of the polynomial hull of W.

By holomorphic curve we will mean a connected 1-dimensional
holomorphic manifold.

Proof. Let O be the interior of the polynomial hull of W. It has to be
shown that the set of points p € C which belong to O is closed in C. It is
obviously open. Things being so localized one has to face the following
situation: a ‘‘small’’ analytic disk given by a holomorphic parametrization
©: A = C (A the unit disk in C) so that (1) € O, U+ a side of M included
in W (at least one of the two sides is such) hence in O, in some neighborhood
of (p(&); and one has to show that ¢(0) € O. Fix y a holomorphic map
from C into C” so that: y(e®®) = — N for ® outside some small neigh-
borhood of 0 (mod 27), where N is the unit outer normal to M (with respect
to U'), at say the point ¢(0), and y(0) is arbitrarily chosen.

For n >0, n small enough ¢(e®) + ny(e?®) e O for all 6, hence
¢ (0) + ny(0) € O. Taking into account some uniformity with respect to y (0),
this gives Lemma 2.

III. LIFTING TO C3

We are simply going to consider sets K in C3 rotationally invariant in the
first variable, that we describe as follows. For each ¢ € [0, ;] we are given a
compact set K, C C2. We consider the set K C C?® which is the closure of the
set {(W, z1, 22) € C3; (21, 22) € K|wi» | W| < 10} iee.

K= U {W} X K[W| .
[w[< ¢t
A AN
K denotes the polynomial hull of K in C3, while UK, denotes the polynomial
hull in C2 of the closure of the set U K,.

1<ty

LEMMA 3. Let (0,(;,(,) € C3, the following are equivalent:

{ ) 0.8, C) ek
(i) (C1,0,) € UK, .
Proof. (i) = (ii) is trivial. We are interested in (i) = (1). Let P(w, 21, 25)

be a polynomial in 3 variables. To P we associate the polynomial P defined
by .

~ 1 2n .
P(W) ZI)ZZ) = P(O:» ZlaZZ) = 2—" § P(elew, Z1,Z2)de .
T
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Since K is invariant under rotation in the w variable:

sup | P| < sup | P].
K K

Set Q(z,, 22) = P(0, 2, 2). Using (il) one gets
| P(0,%1,82) =101, )| <sup| Q] = Suplﬁlés?{pll’l.

UK{ K
So (i) is established.

Remark. There is another approach to Lemma 3, which may better
‘““explain”® the situation, and that we just sketch. If ¢:A—>C? is a
holomorphic disk (¢ continuous on A, holomorphic on A) and 7 is a
continuous map from R/2nZ into [0, #,] so that ¢(e’®) € K1 (8 € [0, 27)),

then ¢(0) U/\K[. One sees that (0, ¢(0)) € K by considering holomorphic
disks (Q, ¢): A = C x C2, ‘with Q(0) =0 and | Q(e®®)|= T(8). Carrying
this out in general may require the use of the fundamental theorem by
Poletsky [6], which says that, in an appropriate sense, polynomial hulls are
always explained by holomorphic disks.

IV. TREPEAU’S EXAMPLE

Here we describe a class of examples. Let ¥ be a smooth real valued
function defined on [0, 1], constant in no neighborhood of 0, and so
that x(0) =0, |x|< 1. In one of the versions of Trepreau’s original
example x(¢) = ¢. Let .# be the generic 4-dimensional manifold in C3,
given by:

M =A{(w, 21, 22) € C3, IW‘< 1,2z, = 5y ‘|‘iX(lW|2)52,
2 =85 — ix(|wl|?)sy; (51, 5,) € R2} .

Notice that on .#, z7 + z3 is a real valued function, (on .#, z> + z2 > 0),
hence:

(*) Any function which depends only on (2> + z%) is a CR function
on .

This already gives example of CR functions which cannot be holo-
morphically extended to any wedge. The existence of such functions is related
to the fact that .# is not ‘“minimal”’ (in the sense of Tumanov), it

contains C X {0} X {0} as a (nongeneric) CR manifold of same CR dimension
(see [9], [2]).
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