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260 J.-P. ROSAY

II. THE HEART OF THE MATTER

I1.0. DEFINITIONS, NOTATIONS

Given a set E CC”, not necessarily a manifold, a wedge
W(= W(E,T,p)) with edge E is defined in the following way.
For I' a nonempty open cone in C” and p > 0, one sets

W={e+yeCr,eecE,yveT,

y|<p}.

Remark. As we will see below the words wedge and edge may be
confusing. Part of the edge may very well be in the interior of the wedge, we
will in fact take advantage of this situation. In case of £ a germ of manifold
one can instead take a cone I' in a transverse (e.g. the normal) space, if one
allows shrinking the two definitions are ‘‘equivalent’’. And in case E is a
hypersurface, a wedge contains locally at least one of the two sides of the
hypersurface.

For € € [0, 1) set

R’ = {(s; + ies,, 5, — ies;) € C2?, (51, 5,) € R?} .
This is a tilted copy of R?. Set
Zg == U Rgl .

O0<e’ <e

And for R > 0 let
*®=%. nB(,R)

-1

(B(0, R) the open ball centered at 0, and of radius R).

I1.1

The following basic (and easy) fact is at the root of Trepreau’s example.

LEMMA 1. Let W be any wedge in C?, with edge Zf. Then every
point in LX — {0} belongs to the interior of the polynomial hull of W.

See Proposition 2 in V for a better result. But notice that the wedge W
is really needed. It is wrong that the polynomial hull of Ef contains
»® _ {0} in its interior. Indeed, the function z7 + z5 is real on
Za(z% + z% =(1—-¢?) (Sf +i§)), hence on the polynomial hull of Ef
(which is in fact equal to XX).
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Proof of Lemma 1. On X, z- + z5 > 0. We then foliate X, by the level
sets of z7 + z5. Fix (a, b) € >R _ {0}, set r = }/a* + b%. Let A = {(z1, 22)
e ¥R, z2 + z2=r?}. This is an annulus in the holomorphic curve
z> + z% = r2, with the nonholomorphic parametrization:

(e’,0) > (cos O + ig’sin 0, sin® — ie’ cos 0)

r
/1 —¢’

0<e <g,0eR/2nZ, with g, = min (8,

R2 _ 7’2
—— 1] . (Such annuli
R% + r?

appear in [11]). Write
(a,b) = (6, +i806,, 6, —i80,), (61, 02) € R2(0< 6 < ¢gy).
Let Y be the circle
Y = {(s; + i85y, 5, — i8s,) € C2, (51, 5,) € R2, 57 + 52 =0° + 04} .

The circle Y is entirely in the annulus A. Now, we make a trivial but crucial
remark.

CLAIM. There are points in Y which are in the wedge‘ W (hence in
the interior of the polynomial hull!).

We now check the claim. The wedge W contains the wedge W with edge
Rg N B(0, R) (given by the same cone I'). Locally, after possible shrinking
of R, there is no loss of generality in assuming that the cone I' contains a non-
zero vector (it, it,) € iR2. Normalize (it;, it,) so that t> + t2 = 6> + o3.
The point (— ¢, + idt,, t; + i8¢;) is a point on the circle Y which is in the
wedge W since it belongs to the ray with direction (i¢,, if,) and with origin
at the point (—1#¢,+id't;, t; +id't;). Take 0<d'<d, 6 — & small
enough.

The claim is proved, and Lemma 1 follows now by propagation along the
holomorphic curve A. I wish to insist that here we are now dealing with one
of the most primitive versions of propagation along holomorphic curve. It is
only with the goal of having a paper elementary and as self contained as
possible that I state and prove Lemma 2 to be applied to M = X — {0},
to get Lemma 1.

LEMMA 2. Let M be a (piece of) C' hypersurface in C2?. Let W
be a wedge with edge M (i.e. at each point of M, W contains at least one
side of M). Let C be a holomorphic curve in M. If some point
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of C belongs to the interior of the polynomial hull of I/ff, then C is
entirely included in the interior of the polynomial hull of W.

By holomorphic curve we will mean a connected 1-dimensional
holomorphic manifold.

Proof. Let O be the interior of the polynomial hull of W. It has to be
shown that the set of points p € C which belong to O is closed in C. It is
obviously open. Things being so localized one has to face the following
situation: a ‘‘small’’ analytic disk given by a holomorphic parametrization
©: A = C (A the unit disk in C) so that (1) € O, U+ a side of M included
in W (at least one of the two sides is such) hence in O, in some neighborhood
of (p(&); and one has to show that ¢(0) € O. Fix y a holomorphic map
from C into C” so that: y(e®®) = — N for ® outside some small neigh-
borhood of 0 (mod 27), where N is the unit outer normal to M (with respect
to U'), at say the point ¢(0), and y(0) is arbitrarily chosen.

For n >0, n small enough ¢(e®) + ny(e?®) e O for all 6, hence
¢ (0) + ny(0) € O. Taking into account some uniformity with respect to y (0),
this gives Lemma 2.

III. LIFTING TO C3

We are simply going to consider sets K in C3 rotationally invariant in the
first variable, that we describe as follows. For each ¢ € [0, ;] we are given a
compact set K, C C2. We consider the set K C C?® which is the closure of the
set {(W, z1, 22) € C3; (21, 22) € K|wi» | W| < 10} iee.

K= U {W} X K[W| .
[w[< ¢t
A AN
K denotes the polynomial hull of K in C3, while UK, denotes the polynomial
hull in C2 of the closure of the set U K,.

1<ty

LEMMA 3. Let (0,(;,(,) € C3, the following are equivalent:

{ ) 0.8, C) ek
(i) (C1,0,) € UK, .
Proof. (i) = (ii) is trivial. We are interested in (i) = (1). Let P(w, 21, 25)

be a polynomial in 3 variables. To P we associate the polynomial P defined
by .

~ 1 2n .
P(W) ZI)ZZ) = P(O:» ZlaZZ) = 2—" § P(elew, Z1,Z2)de .
T
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