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II. The heart of the matter

II.O. Definitions, notations

Given a set ECC", not necessarily a manifold, a wedge

W(= W(E, L, p)) with edge E is defined in the following way.
For T a nonempty open cone in Cn and p > 0, one sets

W {e + y e Cn, e e E, y e T, | y \ < p}

Remark. As we will see below the words wedge and edge may be

confusing. Part of the edge may very well be in the interior of the wedge, we

will in fact take advantage of this situation. In case of E a germ of manifold
one can instead take a cone T in a transverse (e.g. the normal) space, if one
allows shrinking the two definitions are "equivalent". And in case E is a

hypersurface, a wedge contains locally at least one of the two sides of the

hypersurface.
For 8 e [0, 1) set

Rg {(5*1 + i&s2, s2 - issi) e C2, (si, s2) e R2}

This is a tilted copy of R2. Set

U R^,
0 < E' < 8

And for R > 0 let

If Ig n B(0,R)

(B(0,R) the open ball centered at 0, and of radius R).

II.1

The following basic (and easy) fact is at the root of Trepreau's example.

Lemma 1. Let W be any wedge in C2, with edge Zf. Then every

point in Zf - {0} belongs to the interior of the polynomial hull of W.

See Proposition 2 in V for a better result. But notice that the wedge W

is really needed. It is wrong that the polynomial hull of Zf contains

Zf - {0} in its interior. Indeed, the function z\ + z\ is real on

ZE{z\ + zl - (1 - e2) (Si + si)), hence on the polynomial hull of Zf
(which is in fact equal to Zf
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Proof of Lemma 1. On Z8, z\ + z\ ^ 0. We then foliate ZE by the level

sets of z\ + z\. Fix (a, b) e Zf - {0}, set r l/tf2 + Z?2. Let A {(zi, z2)

6 Zf ,Zi + z2 r2}. This is an annulus in the holomorphic curve

z2 + z2 r2, with the nonholomorphic parametrization :

f
(&', 0) I-»- (cos 0 + /e' sin 0, sin 0 - cos 0)

l/T^i7*

(s, i/^i\ / R2 + r2/
(Such annuli0 < e' < Si, 0 e R/27CZ, with 81 min

appear in [11]). Write

(a, b) (oi + /So2, o2 - /SoO, (oi, o2) e R2(0 < ô < 81).

Let Y be the circle

Y - {(si + ids2, s2 - iàsi) e C2,(si, s2) e R2, s] + s\ o\ + g\}

The circle Y is entirely in the annulus A. Now, we make a trivial but crucial
remark.

Claim. There are points in Y which are in the wedge W (hence in

the interior of the polynomial hull!).

We now check the claim. The wedge W contains the wedge Ws with edge

R g n B(0, R) (given by the same cone T). Locally, after possible shrinking
of R, there is no loss of generality in assuming that the cone T contains a nonzero

vector (iti, it2) e /R2. Normalize (iti, it2) so that t\ + t\ o] + o\.
The point (- t2 L /S/j k C + /S/2) is a point on the circle Y which is in the

wedge W since it belongs to the ray with direction (itx, it2) and with origin
at the point (- t2 + ih'tx, t{ + ib't2). Take 0 < ô' < ô, ô - b' small

enough.
The claim is proved, and Lemma 1 follows now by propagation along the

holomorphic curve A. I wish to insist that here we are now dealing with one
of the most primitive versions of propagation along holomorphic curve. It is

only with the goal of having a paper elementary and as self contained as

possible that I state and prove Lemma 2 to be applied to M Zf - {0},
to get Lemma 1.

Lemma 2. Let M be a (piece of) C1 hypersurface in C2. Let W
be a wedge with edge M (i.e. at each point of M, W contains at least one
side of M). Let C be a holomorphic curve in M. If some point
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of C belongs to the interior of the polynomial hull of W, then C is

entirely included in the interior of the polynomial hull of W.

By holomorphic curve we will mean a connected 1-dimensional

holomorphic manifold.

Proof. Let O be the interior of the polynomial hull of W. It has to be

shown that the set of points p e C which belong to O is closed in C. It is

obviously open. Things being so localized one has to face the following
situation: a "small" analytic disk given by a holomorphic parametrization
(p: À -> C (A the unit disk in C) so that <p(1) e O, U+ a side of M included
in W (at least one of the two sides is such) hence in O, in some neighborhood
of cp (A) ; and one has to show that (p (0) e O. Fix \j/ a holomorphic map
from C into Cn so that: \j/(e/e) — -N for 0 outside some small
neighborhood of 0 (mod 27t), where N is the unit outer normal to M (with respect

to U+), at say the point cp (0), and (0) is arbitrarily chosen.

For T| > 0, rj small enough (p(e/e) + r|\j/(e/e) e O for all 0, hence

cp (0) + r|\|/(0) e O. Taking into account some uniformity with respect to \|/(0),
this gives Lemma 2.

III. Lifting to C3

We are simply going to consider sets K in C3 rotationally invariant in the

first variable, that we describe as follows. For each t e [0, t0] we are given a

compact set Kt C C2. We consider the set K C C3 which is the closure of the

set {(w,Zi, z2)eC3; (z,, z2) e Klwh \ w\s£}. i.e.

K= U {w}xKlwl.
\w\^tQ

A ^
ATdenotes the polynomial hull of K in C3, while \jKt denotes the polynomial
hull in C2 of the closure of the set U Kt.

t ^ to

Lemma 3. Let (0, Çi, ^2) ^ C3, the following are equivalent:

i(i) (0, Ci ^2)zK
\(ii) fi.UeuKt.

Proof, (i) => (ii) is trivial. We are interested in (ii) => (i). Let P(w, Zi, Zi)
be a polynomial in 3 variables. To P we associate the polynomial P defined

by

1 f2*
P(W, Zu Zi) P(0, Zi, Zi) — P(elQw, z\, Zi)dQ
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