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TREPREAU’S EXAMPLE,
A PEDESTRIAN APPROACH

by Jean-Pierre ROSAY

I. INTRODUCTION

A few years ago J.M. Trepreau gave an example of a nondecomposable
CR function, answering in the negative an outstanding question in several
complex variables and microlocal analysis. The example appeared finally in
print in [7], and it is magnificently explained there. Trepreau’s example can
also be explained by Tumanov’s theory, without F.B.I., see [10].

However, I am writing this paper!

It is my goal to go through Trepreau’s example with the naivest tools
(e.g. without appealing to the Hanges-Sjostrand theorem, or to Tumanov’s
theory of disks). In my mind, such a basic example (in CR analysis and in
polynomial convexity) deserves a ‘‘pedestrian’’ approach. Parts II-IV of the
paper use only very classical tools in several complex variables and the
Baouendi-Treves approximation ([3]) which is a very natural extension of
Weierstrass approximation. In II, I describe what I consider to be the heart
of the matter. It takes place in C2. In III a lifting process from C2 to C3 is
discussed. It is used in IV to show, in Trepreau’s example, the existence of
nondecomposable CR functions. In V, we use F.B.I. (the simplest version
suffices, and it is used in a very simple way) to complete the results given
in II and III. Proposition 2 (the cone and the wedge) may be of independent
interest (but cannot be claimed as being original). Finally the title of VI
(““Trepreau does more’’) says it all!

The reader can look at [4] for the basic theory of CR functions, and
at [1], especially §9, for positive results on wedge decomposability,
background information, and further references. Notations given in II will be
kept in the whole paper.

Partially supported by NSF Grant.
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II. THE HEART OF THE MATTER

I1.0. DEFINITIONS, NOTATIONS

Given a set E CC”, not necessarily a manifold, a wedge
W(= W(E,T,p)) with edge E is defined in the following way.
For I' a nonempty open cone in C” and p > 0, one sets

W={e+yeCr,eecE,yveT,

y|<p}.

Remark. As we will see below the words wedge and edge may be
confusing. Part of the edge may very well be in the interior of the wedge, we
will in fact take advantage of this situation. In case of £ a germ of manifold
one can instead take a cone I' in a transverse (e.g. the normal) space, if one
allows shrinking the two definitions are ‘‘equivalent’’. And in case E is a
hypersurface, a wedge contains locally at least one of the two sides of the
hypersurface.

For € € [0, 1) set

R’ = {(s; + ies,, 5, — ies;) € C2?, (51, 5,) € R?} .
This is a tilted copy of R?. Set
Zg == U Rgl .

O0<e’ <e

And for R > 0 let
*®=%. nB(,R)

-1

(B(0, R) the open ball centered at 0, and of radius R).

I1.1

The following basic (and easy) fact is at the root of Trepreau’s example.

LEMMA 1. Let W be any wedge in C?, with edge Zf. Then every
point in LX — {0} belongs to the interior of the polynomial hull of W.

See Proposition 2 in V for a better result. But notice that the wedge W
is really needed. It is wrong that the polynomial hull of Ef contains
»® _ {0} in its interior. Indeed, the function z7 + z5 is real on
Za(z% + z% =(1—-¢?) (Sf +i§)), hence on the polynomial hull of Ef
(which is in fact equal to XX).
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Proof of Lemma 1. On X, z- + z5 > 0. We then foliate X, by the level
sets of z7 + z5. Fix (a, b) € >R _ {0}, set r = }/a* + b%. Let A = {(z1, 22)
e ¥R, z2 + z2=r?}. This is an annulus in the holomorphic curve
z> + z% = r2, with the nonholomorphic parametrization:

(e’,0) > (cos O + ig’sin 0, sin® — ie’ cos 0)

r
/1 —¢’

0<e <g,0eR/2nZ, with g, = min (8,

R2 _ 7’2
—— 1] . (Such annuli
R% + r?

appear in [11]). Write
(a,b) = (6, +i806,, 6, —i80,), (61, 02) € R2(0< 6 < ¢gy).
Let Y be the circle
Y = {(s; + i85y, 5, — i8s,) € C2, (51, 5,) € R2, 57 + 52 =0° + 04} .

The circle Y is entirely in the annulus A. Now, we make a trivial but crucial
remark.

CLAIM. There are points in Y which are in the wedge‘ W (hence in
the interior of the polynomial hull!).

We now check the claim. The wedge W contains the wedge W with edge
Rg N B(0, R) (given by the same cone I'). Locally, after possible shrinking
of R, there is no loss of generality in assuming that the cone I' contains a non-
zero vector (it, it,) € iR2. Normalize (it;, it,) so that t> + t2 = 6> + o3.
The point (— ¢, + idt,, t; + i8¢;) is a point on the circle Y which is in the
wedge W since it belongs to the ray with direction (i¢,, if,) and with origin
at the point (—1#¢,+id't;, t; +id't;). Take 0<d'<d, 6 — & small
enough.

The claim is proved, and Lemma 1 follows now by propagation along the
holomorphic curve A. I wish to insist that here we are now dealing with one
of the most primitive versions of propagation along holomorphic curve. It is
only with the goal of having a paper elementary and as self contained as
possible that I state and prove Lemma 2 to be applied to M = X — {0},
to get Lemma 1.

LEMMA 2. Let M be a (piece of) C' hypersurface in C2?. Let W
be a wedge with edge M (i.e. at each point of M, W contains at least one
side of M). Let C be a holomorphic curve in M. If some point



262 J.-P. ROSAY

of C belongs to the interior of the polynomial hull of I/ff, then C is
entirely included in the interior of the polynomial hull of W.

By holomorphic curve we will mean a connected 1-dimensional
holomorphic manifold.

Proof. Let O be the interior of the polynomial hull of W. It has to be
shown that the set of points p € C which belong to O is closed in C. It is
obviously open. Things being so localized one has to face the following
situation: a ‘‘small’’ analytic disk given by a holomorphic parametrization
©: A = C (A the unit disk in C) so that (1) € O, U+ a side of M included
in W (at least one of the two sides is such) hence in O, in some neighborhood
of (p(&); and one has to show that ¢(0) € O. Fix y a holomorphic map
from C into C” so that: y(e®®) = — N for ® outside some small neigh-
borhood of 0 (mod 27), where N is the unit outer normal to M (with respect
to U'), at say the point ¢(0), and y(0) is arbitrarily chosen.

For n >0, n small enough ¢(e®) + ny(e?®) e O for all 6, hence
¢ (0) + ny(0) € O. Taking into account some uniformity with respect to y (0),
this gives Lemma 2.

III. LIFTING TO C3

We are simply going to consider sets K in C3 rotationally invariant in the
first variable, that we describe as follows. For each ¢ € [0, ;] we are given a
compact set K, C C2. We consider the set K C C?® which is the closure of the
set {(W, z1, 22) € C3; (21, 22) € K|wi» | W| < 10} iee.

K= U {W} X K[W| .
[w[< ¢t
A AN
K denotes the polynomial hull of K in C3, while UK, denotes the polynomial
hull in C2 of the closure of the set U K,.

1<ty

LEMMA 3. Let (0,(;,(,) € C3, the following are equivalent:

{ ) 0.8, C) ek
(i) (C1,0,) € UK, .
Proof. (i) = (ii) is trivial. We are interested in (i) = (1). Let P(w, 21, 25)

be a polynomial in 3 variables. To P we associate the polynomial P defined
by .

~ 1 2n .
P(W) ZI)ZZ) = P(O:» ZlaZZ) = 2—" § P(elew, Z1,Z2)de .
T
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Since K is invariant under rotation in the w variable:

sup | P| < sup | P].
K K

Set Q(z,, 22) = P(0, 2, 2). Using (il) one gets
| P(0,%1,82) =101, )| <sup| Q] = Suplﬁlés?{pll’l.

UK{ K
So (i) is established.

Remark. There is another approach to Lemma 3, which may better
‘““explain”® the situation, and that we just sketch. If ¢:A—>C? is a
holomorphic disk (¢ continuous on A, holomorphic on A) and 7 is a
continuous map from R/2nZ into [0, #,] so that ¢(e’®) € K1 (8 € [0, 27)),

then ¢(0) U/\K[. One sees that (0, ¢(0)) € K by considering holomorphic
disks (Q, ¢): A = C x C2, ‘with Q(0) =0 and | Q(e®®)|= T(8). Carrying
this out in general may require the use of the fundamental theorem by
Poletsky [6], which says that, in an appropriate sense, polynomial hulls are
always explained by holomorphic disks.

IV. TREPEAU’S EXAMPLE

Here we describe a class of examples. Let ¥ be a smooth real valued
function defined on [0, 1], constant in no neighborhood of 0, and so
that x(0) =0, |x|< 1. In one of the versions of Trepreau’s original
example x(¢) = ¢. Let .# be the generic 4-dimensional manifold in C3,
given by:

M =A{(w, 21, 22) € C3, IW‘< 1,2z, = 5y ‘|‘iX(lW|2)52,
2 =85 — ix(|wl|?)sy; (51, 5,) € R2} .

Notice that on .#, z7 + z3 is a real valued function, (on .#, z> + z2 > 0),
hence:

(*) Any function which depends only on (2> + z%) is a CR function
on .

This already gives example of CR functions which cannot be holo-
morphically extended to any wedge. The existence of such functions is related
to the fact that .# is not ‘“minimal”’ (in the sense of Tumanov), it

contains C X {0} X {0} as a (nongeneric) CR manifold of same CR dimension
(see [9], [2]).



264 J.-P. ROSAY

Before going any further, we wish to rewrite the definition of .# in the
spirit of II and III. With the notations used in II:

‘% = {(W9 ZI’ZZ) € C3’ | w|< 1,(21,Z2) € Ri(iw!Z)} &

PROPOSITION 1. There are smooth CR functions on .# which in no
neighborhood of 0 can be decomposed into the sum of boundary values of
Sfunctions holomorphic in wedges (with edge _#).

There is some ambiguity in the statement since it is not made precise in
which sense boundary values are taken. To keep things at the most elementary
level we will treat in detail the case of continuous boundary values. See the
remark below, and V, for the case of more general boundary values. (Although
I suspect that one can prove, as a general fact, that if every smooth
CR function is decomposable, then the decomposition can be done with
functions continuous (and even smooth) up to the edge).

Proof. We can assume that in any neighborhood of 0, y takes some
strictly positive values (permuting the variables z; and z,, if needed).
Let 77 be an arbitrary wedge, with edge .#, the intersection of .# with
some neighborhood of 0.

The reader willing to read V will see that every CR function on _#,
which has a holomorphic extension to some wedge with edge _#, s
analytic in some neighborhood of 0.

The reader unwilling to read V, and willing to use only the simple
techniques used in II and III will have to use the ‘‘subclaim’’.

“SUBCLAIM’’. Let f be a continuous CR function on _#,, which
has a holomorphic extension to 7. Then there exists € >0, and V the
intersection of a neighborhood of 0 in C? with a neighborhood
of X.— {0} so that the function (x;,x;)™ f(0, x,, x,) has a continuous
extension to V, holomorphic on the interior of V.

Proof of the subclaim. After shrinking of 7 and .#,, the Baouendi-
Treves approximation formula ([3], [8] 11.2) shows that f is the uniform limit
on 7 of a sequence of polynomials (P;).

For I' an open cone in C2 and p >0, and w e C|w| < p, we consider
K, the closure in C? of the wedge W(Rfmw[z) N B(0, p), T, e), (with edge
in R2, ). One can choose I' and p so that for every we C, | w|< p,
we have {w} X K|,,; C . We apply Lemma 3 to these sets K|, and to the

set K = u({w} X Kj,).
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And Lemma 1 then gives that the polynomial hull of 7" contains
{0} x V, with V as in the claim. The sequence of approximating polynomials
converges uniformly on V to a function which provides the desired extension.
The subclaim is thus proved.

Now we finish the proof of the proposition. Let ¢ be a function on R*
which is not analytic at 0, or, for the reader willing to use only the ‘‘subclaim”’,
so that the function (x;, x2)— @ (x> + x5) does not have a continuous
extension to ¥, holomorphic on the interior of V¥, for any V intersection of
a neighborhood of 0 in C? with a neighborhood of X, — {0}. Any smooth
function ¢ nonidentically zero but vanishing on open intervals in any
neighborhood of 0 has this property. As pointed out (*), the function
(W, 21, 22) > 0z} + z3) in a CR function on .#. It follows from V or the
subclaim that it is a nondecomposable one. It cannot be written as the sum
of continuous boundary values of holomorphic function on wedges.

Remark. There are some few technical details (such as precising the shape
of V) to be dealt with, to adapt the approach that we have just used to the
case of boundary values distributions. In this setting the Baouendi Treves
approximation still gives approximation by polynomials (on wedges, with
locally uniform convergence, and with uniformly controlled polynomial
growth when approaching the edge). Also, one can still speak about the
restriction of a CR distribution on .# to {0} x R2(f(0, x,, x,)), (this is a
basic fact used to define mini F.B.I, see [8] Corollary 1.4.1.).

But it seems pointless to go into this. Indeed this kind of difficulties merely
disappear when using the results explained in the next paragraph.

V. MORE

1) In Lemma 1, the right conclusion is in fact that 0 belongs to the interior
of the polynomial hull of W. Applying Lemma 1, with trivial homogeneity
considerations, and replacing Rﬁ, by R?, it reduces to the following
proposition.

PROPOSITION 2. Let f be a function defined on some neighborhood
of 0 in R?. Assume that near 0, f extends holomorphically to a

conic neighborhood of R? — {0}, and also to a wedge with edge R2.
Then f is analytic at 0.

By conic neighborhood, we mean a cone which is a neighborhood
of R? — {0} in R2. We did not make precise whether J 1s continuous, but
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we can assume it by translation in the wedge, and uniformity, (and f could
as well be a distribution or a hyperfunction).

Although the result follows trivially from Trepreau’s work (at least), it may
have been unnoticed. Here we give a direct proof.

Proof. The analyticity of f, at 0, is related to the exponential decay of
its FBI transform as | & |— + o. We can make the following choice of FBI
transform:

Ffx &) = 5 f(s)e s e-ltls-02gs
|s|< R

where x = (x;, x2) =0, s = (51, 52) € R?, ds = ds;ds,, § = (£, &) € R?,

s & =58 +58,, |[E]|= l/ﬁ+ &%, (s —x)?%=(s1—x1)* + (52 — x2)?%, and
R > 0 is fixed (arbitrarily) (see e.g. [5] 9.6 or [8] page 416 formula (4)).

The holomorphic extendability of f, near 0, in the wedge R? + iI" (I an
open convex cone in R2) gives the exponential decay of .7 f as |£|— + o
and £ € R?2 — Ty (T'y the dual cone). We can assume | f|< 1, s0|.7f|< 1
(taking R < 3).

It is a trivial fact that under the hypothesis of Proposition 2, there
exists € a conic neighborhood of R? — {0} so that f has near 0, a
holomorphic extension to a ‘‘wedge’ Q + iT. It is just the fact that in R? the
union of a disk centered at 0 and a cone (with vertex at 0) contains cones with
vertices near 0.

Fix U an open connected neighborhood in GL (2, C) of the real rotation

cos® —sinH

matrices ( ) . Take U so small that U(R?) C Q. Consider

sin® cos®
GL (2, C) as an open set in C*.

1 0
Set e = (O 1) . For every U, nonempty open set U; CC U, there exists

¢ > 0 so that for every holomorphic function 4 defined on U, | 4 | < 1 one had

log| h(e) | < ¢, log| A(T) |dT.

On applies this estimate to

h(T) = 5 fo T(S)e—f5'§—|§|(5—x)2d5 ,
|s|<R

assuming that R is chosen small enough. It gives us that if for some nonempty
open set of 7T’s in U the FBI transform of f © T has exponential decay in
some direction, so has the FBI transform of f itself.
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The key fact is now that if f extends to a wedge R? + iT', f o T extends
to a totally different wedge.

For example, if T is a real rotation, f o T extends to the wedge
R? + ;T -1(I'). Thus one gets the exponential decay of the FBI transform
of f off the dual cone to the cone T ~1(I') as well, and finally (letting 7" vary)
the exponential decay of the FBI transform of f, as desired.

2) Now using Proposition 2 instead of Lemma 1 in IV, we are already able
to prove, instead of the subclaim, that (x;, x,) — f(0, x;, x,) is real analytic
at (0, 0).

In fact the situation is even easier, since we can now translate in the wedge
we need only to know that f is defined in the wedge, without growth condition
when approaching the edge.

3) To really get the real analyticity of functions which extend to a wedge
in Trepreau’s example we need to prove that a neighborhood of 0 in C? (and
not only in {0} x C2) is included in the polynomial hull of %, This requires
an improvement of III.

Instead of (ii) = (i) in Lemma 3, we need to show that (ii)’ = (i)” where
(i))” and (i) are:
{ @ o, L1,82) €K
(11), ((:13 CZ) € (Ulwo|<th)A
Set K’ be the closure of the set

U ({w} X Ku)) -
|wol<|wl
If (i1)" holds (0, C,, () € j<\ " (by (ii) = (i)). Using invariance under rotation
in w and the local maximum principle X n {|w|<]|wo]|} is the product
{weC,|w|<|we|} x L for some compact set L in C2. So (0, {,, {,) e X
implies (wy, {1, {,) € jf\ C l%

Remarks. 1t would be possible to adapt the remark at the end of the proof
of Lemma 3. The change is: take | 7(8) | > | w, | and Q(0) = w.

After reading this paper, J.M. Trepreau has communicated to me a proof
of Proposition 2, with some common features with the proof given here, but

based on a simple construction of analytic disks in C x C?, instead
of F.B.I.
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VI. TREPREAU DOES MORE

1) Trepreau not only deals with wedge decomposability (which is related

to wave front sets in acute cones), he shows in his example that the wave front
set of a CR function at O is either empty or the whole conormal.

2) Our proof may not adapt to a slightly perturbed situation. But

this is precisely the point! Let us compare with the theory of elliptic
points for surfaces with isolated complex tangencies. The model case
(z;=]z:|>+ aRez},0 < a< 1) is totally trivial to explore. Only the
perturbed case needs Bishop’s disks. We hope that the reader is convinced that
the same is true here.

[2]

[3]

[4]
[5]
[6]
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