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Finally

. 8(Tx) 1
lim inf = .
§(x) = o S(X) @(A)

The following table gives the first values of ®

n 1 2 3 4 5 6 7 8 9 10

®(n) 1 3 3 3 5 3 5 5 5 5
Actually Theorem 1 can be improved. There exist two constants
C, = C,(T) and C, = C,(T) such that for all rational x

v 3(x) - C<d(T) <OQ)d(x) + (.

Both inequalities are sharp apart from the exact values of C; and C;.

5. MORE QUESTIONS

To every Mobius map T we associate the interval I(T) = [® ~1(A), ®(A)].

PROBLEM 3. Is it true that for all C e I(T)

there exists a sequence
of rational numbers x, such that

lim 8(x,) = © and

§(Tx,
lim OU*) _ g
n— oo 8(Xn)

PROBLEM 4. Let T, 715, -, T
coprime determinants A, Ay, -+, Ay.
Is it true that for all

be Mobius maps with pairwise

k
€1, Coy oo L e I 1T
i=1
there exists a sequence of rational x,

with strictly increasing depths such
that forall i=1,2, -,k

. O(Tixy)
lim

= (.9
o 8(X,) =

Can k be infinite?

The following result should be mentioned at this point.
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THEOREM 3. There exists a sequence of rational numbers x, Wwith
strictly increasing depths such that for all Mébius maps T
5 (Tx,)
1m =1
n—® 6(xn)

The proof is quite simple. To each irrational
X = [C09 Ci1, C2, ]
we associate the sequence of best approximations

_ P
dn

X = [co, €1, C2s """, Cpl -

Paul Lévy [9] showed that for almost all x

el
12In2

ngqg,~ n

as n goes to infinity (see for example [1] p. 45). In other words, for almost
all x

12In2

2

0 (Xn) ~

Ing, .

Therefore, for almost all x

S(axn + b) 12In2

In(cp, + dg,) .
cx, +d

s
Now p, ~ xq, so that

cpn + dg, ~ (cx + d)q,
In(cp, +dg,) ~Ing, .

Hence for almost all x

)
6(ax

~ &(x,) .
cxn+d) Gen)

By countable intersection, we conclude that for almost all x and for all Mobius
map 1T

O(Tx,) ~ 6(xn) . QED
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PROBLEM 5. Let T be a given Mobius map and let I(T) be the
associated interval. Let { e I(T). To compute the Hausdorff dimension of
those x for which

. O0(Txy)
lim =

n— oo N

C.

Extend this problem to higher dimensions in the spirit of problem 4.

§6. QUADRATIC SURDS

Let x be a real quadratic number. Its continued fraction expansion is
ultimately periodic. Let m(x) be its period. H. Cohen [3], followed by
J. Cusick [4] and Paysant-Leroux [11] studied the action of a Mdbius map on
the period. They established that

, n(Tx)
lim sup = R(A)
n(x) = T(X)
where R(A) is an integer. Furthermore
Anlnn < R(n) < Bnlnn+ 1

for some constants A > 0, B > 0. A simple argument then shows that

) ) t(Tx) 1
lim inf = .
n(x) 2o TU (X) R (A)

PROBLEM 6. Is it true that for all real quadratic irrational x

sup m(x"?) = o ?

n

Define the interval

1
J(A) = |— :
(A) [R(A), R(A)]

PROBLEM 7. Let e J(A). Prove the existence of a sequence of real
quadratic numbers x, with strictly increasing period such that
n(Tx,)

lim =
n-w T(X,)

Extend this result to higher dimensions as in Problem 4.
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