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GEBRES

par Jean-Pierre SERRE

Le texte ci-aprés reproduit la rédaction Bourbaki n° 518, datant de
septembre 1968.

Son objet est exposé dans les «commentaires du rédacteur», placés au
début. Il s’agit essentiellement des enveloppes algébriques des groupes
linéaires, et de leurs relations avec les différents types de gebres: algebres,
cogébres et bigebres. De telles enveloppes se rencontrent dans les situations
suivantes:

— complexification d’un groupe de Lie réel, par exemple compact;

— représentations galoisiennes p-adiques (cas local), ou /-adiques (cas
motivique);

— représentations linéaires de certains groupes discrets, tels que SL,(Z),
n>=3.

Une étude vraiment générale de ce genre de question nécessite la notion de
catégorie tannakienne, comme 1’ont montré Grothendieck et Saavedra Rivano
(Lect. Notes 265, Springer-Verlag, 1972). Toutefois le cas considéré ici est
nettement plus simple que le cas tannakien général, du fait que ’on dispose
a ’avance d’un «foncteur fibre». C’est ce qui justifie (peut-&tre) la présente
publication.

Le texte initial a été laissé inchangé, a part une correction au n° 5.2
que je dois a P. Deligne. Il y a quelques références a des rédactions non
publiées de Bourbaki (n® 515 et 517), mais elles sont peu nombreuses

et ne devraient pas géner le lecteur (elles ne concernent que des propriétés
standard des involutions de Cartan).

Cette publication a été autorisée par N. Bourbaki; je 1’en remercie
vivement.
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COMMENTAIRES DU REDACTEUR

Soit I" un groupe. Se donner une structure de schéma en groupes affine sur
T (ou, plus correctement, définir une «enveloppe» algébrique de I') revient a
se donner:

— soit une bigebre C de fonctions sur I', de sorte que le schéma en groupes
en question soit Spec(C);

— soit une sous-catégorie de la catégorie des représentations linéaires de I
(cette sous-catégorie étant stable par sous-trucs, quotients, sommes
directes, produits tensoriels, ...).

Ainsi, la structure algébrique réelle (resp. complexe) d’un groupe de Lie
compact (resp. réductif complexe) correspond a la catégorie des représen-
tations analytiques réelles (resp. complexes) du groupe; sa bigébre est formée
des «coefficients de représentations» qui sont analytiques réels (resp.
complexes).

Le but de la rédaction est d’expliquer cette correspondance entre bigebres
et catégories de représentations. 11 y a intérét a traiter d’abord le cas, plus
simple, des cogébres (cela revient a laisser tomber le produit tensoriel des
représentations). C’est ce qui est fait dans les §§1 et 2. Les §§3 et 4 sont
consacrés aux bigebres, et le §5 aux applications aux groupes compacts et
complexes.

AVERTISSEMENTS

1. 1I s’agit, non d’un projet de chapitre, mais d’une rédaction 4 usage
interne, pour 1’édification de BOURBAKI (ou, en tout cas, du rédacteur). On
y utilise librement les notions élémentaires sur les catégories abéliennes et les
schémas affines. Certains morceaux devraient quand méme étre utilisables
dans le livre de LIE.

2. Le rédacteur a fait beaucoup d’efforts pour distinguer sa droite de sa
gauche. Il n’est pas certain d’y étre toujours parvenu.

NOTATIONS

Dans les §§1 a 4, la lettre K désigne un anneau commutatif. A partir du
§2, on suppose (sauf mention expresse du contraire) que c’est un Corps.

Toutes les algebres, cogébres, bigébres, tous les comodules, modules, etc.
sont sur K. M&me chose pour les produits tensoriels. On écrit Hom (V, W) et

V® W au lieu de Homg(V, W) et V ®x W. Le dual d’un module V est
noté V.
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On note Algyx la catégorie des anneaux commutatifs X; munis d’un
morphisme K — K.

L’application identique d’un ensemble X est notée 15 (ou simplement 1 si
aucune confusion sur X n’est a craindre).

§1. COGEBRES ET COMODULES (GENERALITES)

1.1. COGEBRES

Dans tout ce paragraphe, C désigne une cogébre, de coproduit d, possédant
une co-unité (4 droite et a gauche) e. Rappelons (cf. Alg. III) ce que cela
signifie:

C est un module (sur K);

d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(C1) (Coassociativité) Les applications linéaires (1o®d)od et
d®1c)od de C dans C ® C Q C coincident.

() (Co-unité) (Ic®e)od=1cet (e®Qlp)od = 1.

Exemples

(1) Soit Cune cogebre de co-unité e. En composant le coproduit de C avec
la symétrie canonique de C & C, on obtient une seconde structure de cogebre
sur C, dite opposée de la premiere. On la note C?; la co-unité de C? est e.

(2) Toute somme directe de cogébres a une structure naturelle de cogébre.
En particulier, 0 est une cogebre. ’

(3) Supposons que C soit projectif de type fini (comme K-module), et
soit A son dual. Comme le dual de C ® C s’identifie 8 A X A, toute structure
de cogébre sur C correspond a une structure d’algebre associative sur A, et
réciproquement. Pour que e € A soit co-unité de C, il faut et il suffit que ce
soit un élément unité (& gauche et a droite) pour A.

(Lorsque K est un corps, on verra plus loin que toute cogébre est limite
inductive de cogébres obtenues par ce procédé.)

(4) Soit ¥ un module projectif de type fini. Soit
C=End()=VR V.
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La forme bilinéaire Tr(xv) met C en dualité avec lui-méme; appliquant la
méthode de ’exemple précédent, on voit que la structure d’algebre de C définit
par dualité une structure de cogebre sur C, de co-unité la trace Tr: C — K. En
particulier M,(K) a une structure de cogébre canonique, pour laquelle on a

d(Eij) = E Ekj X Ej -
k

(La cogébre opposée est plus sympathique, cf. exercice 1.)

(5) Soient C; et C, deux cogebres, de coproduits d; et d, et de co-unites
e, et e,. Soit ¢ I'isomorphisme canonique de G, ® C; sur C; ® Cy; le
composé

(1c, ® 6® 1¢,) © (d1 ® d>)

munit C; ® C, d’une structure de cogebre, dite produit tensoriel de celles de
C, et C,; elle admet pour co-unité e; ® e,.

(6) L’algebre affine d’un schéma en monoides affine sur K a une structure
naturelle de cogébre, cf. n° 3.1.

1.2. COMODULES

DEFINITION 1. On appelle comodule (¢ gauche) sur C tout module E
muni d’une application linéaire dg:E— C Q@ E vérifiant les axiomes
suivants:

(1) Les applications linéaires (d ® 1g) ©dr et (1c® dg) ©deg de E
dans C® C® E coincident.

2) (e®1g)odg=lg.

L’application dg s’appelle le coproduit de E; on se permet souvent de le
(Ia) noter d.

Remarques

1) Il y a une notion analogue de comodule a droite; on laisse au lecteur
le soin de I’expliciter (ou de remplacer la cogebre C par son opposée C?°). [Le
rédacteur s’est apercu trop tard qu’il était plus commode d’échanger droite et
gauche, i.e. d’appeler «comodules a droite» ceux de la définition 1.]

2) Toute application linéaire dp: E— C® E définit de maniére
évidente une application linéaire de: EQE — C. Lorsque E est un
K-module projectif de type fini, ’application dg— d}s est un isomorphisme
de Hom(E,C® E) sur Hom(E ® E’',C). Or EQ® E’ = End(E) a une
structure naturelle de cogébre, cf. n® 1.1, Exemple 4). On peut vérifier
(cf. exercice 1) que dg vérifie les axiomes (1) et (2) si et seulement si a’}; est
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un morphisme de la cogébre opposée End(E)° a End(E) dans la cogébre C,
compatible avec les co-unités.

3) Supposons que E soit libre de base (v;);;. Une application linéaire
dg: E— C Q E est alors définie par une famille ¢;;, i,/ € I, d’éléments de C
telle que dg(v;) = Z c;; ®v; (pour i fixé, c; doit étre nul pour presque

Jjel
tout j). Les conditions (1) et (2) de la définition 1 se traduisent alors par les
formules:

1 d(c;) = Z Cik & C;j pour i, jel
kel
(2°) e(cy) = &y pour i,jel.

(Lorsque I est fini, cet exemple peut étre considéré comme un cas particulier
du précédent.)
Exemples de comodules

1) Le module C, muni de d, est un comodule (a2 gauche et a droite).

2) Lasomme directe d’une famille de comodules a une structure naturelle
de comodule.

3) Si E est un comodule, et ¥V un K-module quelconque, le couple
(EQ® V,ds ® 1y) est un comodule, noté simplement £ Q V.
4) Les notations étant celles de ’exemple 5) du n° 1.1, soient E; un

comodule sur C, et E, un comodule sur C,. Soit T I’isomorphisme canonique
de E; ® C, sur C, ® E,;; ’application

(¢, ® T ® 1g,) © (dg, ® dg,)
munit E; ® E, d’une structure de comodule sur C; ® C,.

5) Si G est un schéma en monoides affine sur K, et C la bigebre correspon-
dante (cf. n° 3.1), la notion de comodule sur C coincide avec celle de
représentation linéaire de G (ou G-module), cf. n° 3.2, ainsi que SGAD,
exposé 1.

DEFINITION 2. Soient E, et E, deux comodules. On appelle
C-morphisme (ou simplement morphisme) de E, dans E, toute appli-
cation linéaire f:E,— E, telle que

P
(*) (1c® f) o dg, =dg,0 f .

Les C-morphismes de E; dans FE, forment un sous-K-module de
Hom(E;, E,); on le note Hom¢(E, E,).

On note Com la catégorie des C-comodules (a2 gauche); ’addition des
C-morphismes munit Com¢ d’une structure de catégorie additive.
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1.3. UNE FORMULE D’ADJONCTION

On conserve les notations précédentes. Soit ¥ un K-module; d’aprés le
n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur CQ V,

le coproduit correspondant étant d Q 1.
Soit d’autre part £ un comodule. Définissons une application linéaire

6: Hom(E, V) > Hom¢(F, CQ V)
par
6@ =(0c®gode, si geHom(EV).

Cela a un sens, car dg est un morphisme de £ dans C® E, et 10 ® g est un
morphisme de C&® E dans C & V.

PROPOSITION 1. L’application 6:Hom(E, V) - HomC(E,C ® V) est
un isomorphisme.

Soit f:E—- C® V un morphisme. En composant f avec e ® 1y:
C ® V — V, on obtient un élément €(f) de Hom(E, V). On a ainsi défini une
application linéaire

e: Hom®(E,C ® V) - Hom(E, V)
et il suffit de prouver que 6 et € sont inverses ’un de 1’autre. Tout d’abord,
si g €e Hom(E, V), on a:
e(0(@) =(€®1) o0 =1y o(Ic®go
=e®godg=go(e® lg)odg
=golg=g,

ce qui montre bien que £ 0 § = 1.
D’autre part, si f € HomC(E,C ® V), on a:

0(e(f) =Uc®e(N))odr=(1c® (e® 1y) © f)) 0 ds
=(1c®e®1y)o(1c® f) o dg
=(lc®e@1ly)o@d®1y)o f
=(1c®eod)®1y) o f
=lc®1ly)o f=71f,

ce qui montre bien que 6 o € = 1, cqfd.

[Ce qui précede est un bon exemple d’un principe général: tout calcul relatif
aux cogebres est trivial et incompréhensible.]
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Exemples

1) Prenons V =FE et g = 1g; I’élément correspondant de Hom€(E,C ® E)
est le coproduit dg: E—> C® E.

2) Prenons V = K. On obtient une bijection 0: E' = HomC¢(E, C). La
bijection réciproque associe a tout morphisme f:E — C la forme linéaire

eo f.

1.4. CONSEQUENCES D’UNE HYPOTHESE DE PLATITUDE

A partir de maintenant, on suppose que C est plat (comme K-module). Si
V est un sous-module d’un module W, on identifie C & V au sous-module
correspondant de CR W, et CQ (W/V)a (CQR® W)/ (CR V).

DEFINITION 3. Soit E un C-comodule, et soit V un sous-module

de E. On dit que V est stable par C (ou que c’est un sous-comodule
de E) si dr appliqgue V dans CQ V.

Si tel est le cas, on vérifie tout de suite que Papplication dy: V>C X V
induite par dg fait de ¥V un comodule (d’ou la terminologie); on définit de
méme le comodule quotient E/ V.

Exemples

1) Soit (V;);; une famille de sous-modules du comodule E. Si les V;
sont stables par C, il en est de méme de E V; (resp. de M V; lorsque I est

iel iel
fini). Cela résulte des formules:
CRLV)I=L(CRV)

. CR®NV)=N(C®V), I fini,

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dg: E = C Q E identifie E a un
sous-comodule de C Q E (muni du coproduit d ® 1g, cf. n° 1.3). On notera
que ce sous-comodule est méme facteur direct dans C @ E comme K-module
(mais pas en général comme comodule), en vertu de la formule (2) de la
définition 1.

PROPOSITION 2. Soit f:E, — E, un morphisme de comodules. Alors
Ker(f) et Im(f) sont stables par C,; de plus, f définit par passage
au quotient un isomorphisme du comodule E;/Ker(f) sur le comodule

Im(f).
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Puisque C est plat, C ® Ker(f) est le noyau de 1c ® fet C®Im(f)en
est I’image. On en déduit aussitot que Ker(f) et Im(f) sont stables par C.
Le fait que f définisse un isomorphisme de E;/Ker(f) sur Im( f) est
immédiat.

COROLLAIRE 1. La catégorie Comc est une catégorie abélienne et le
foncteur «module sous-jacent» est exact.

C’est clair.

Remargue. 1l est non moins clair que le foncteur «module sous-jacent»
commute aux limites projectives finies et aux limites inductives quelconques.

COROLLAIRE 2. Si V est un K-module injectif, le comodule CQ V
est injectif dans Comg.

En effet, la proposition 1 montre que le foncteur
E~ HomC(E, CQ V)

est exact.

PROPOSITION 3. Soit V un sous-module d’'un comodule E, et soit
Vo [Pensemble des éléments x € E tels que dg(x) appartiennea CQ V.
Alors V?° est un sous-comodule de E; c’est le plus grand sous-comodule
de E contenu dans V.

Il faut d’abord prouver que V¢ est stable par C, i.e. que dy applique V°
dans C® V°. Or Ve est défini comme le noyau de I’homomorphisme
E-CQ®E—CQR(E/V), la premicre fleche étant dr. Puisque C est plat, il
s’ensuit que C Q V¢ est le noyau de ’homomorphisme

CRE-CRCRQE-CQRQCRE/V),

la premiere fleche étant 1o ® dg. Pour prouver que dg(V °) est contenu dans
C ® Vo, il suffit donc de vérifier que le composé

Vo—>C®E—>C®C®E—’C®C®(E/V)

est nul. Mais, d’aprés 1’axiome (1) de la déf. 1, le composé (1¢ ® dz) © dg
est égal a (d ® 1g) © dg. Or dg applique V° dans C ® V par construction;
Pimage de V° dans C® C @ E est donc contenue dans (d ® 1) (C ® V),
donc dans C® C® V, et son image dans C® C ® (E/ V) est bien nulle.
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D’autre part, I’axiome (2) de la déf. 1 montre que V° est contenu dans
(e ® 1p) (C® V), donc dans V. Enfin, il est clair que tout sous-comodule
de E contenu dans V est contenu dans V°, cqfd.

Nous dirons qu’un comodule est de type fini (resp. libre, projectif, ...) si
c’est un K-module de type fini (resp. un K-module libre, un K-module
projectif, ...).

COROLLAIRE. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
de(W) est un sous-module de type fini de C ® E. On peut donc trouver un
sous-module V de type fini de E tel que C ® V contienne dg(W). Soit V°
I’ensemble des x € E tels que de(x) € C&® V. D’aprés la proposition, V¢ est
un sous-comodule de E contenu dans V, donc de type fini (puique K est
noethérien). Il est clair que V° contient W, cqfd.

§2. COGEBRES SUR UN CORPS
A partir de maintenant, ’anneau de base K est un corps.

2.1. SOUS-COGEBRES

Soit C une cogebre sur K, de coproduit d et de co-unité e.
DEFINITION 1. Un sous-espace vectoriel X de C est appelé une sous-
cogébre de C si d(X) est contenu dans X @ X.

S’il en est ainsi, ’application linéaire dyx: X — X ® X induite par d
munit X d’une structure de cogébre, ayant pour co-unité la restriction
de e a X.

Exemples

1) Si (X;);cs est une famille de sous-cogebres de C, la somme des X; et
I’intersection des X; sont des sous-cogebres de C. Cela se vérifie au moyen
des formules:

Y Xi®X) C (Y X)® (Y X)
NX®X) =(NX)®(N X)) .
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2) Une sous-cogébre de rang 1 (sur K) de C a pour base un ¢élément non
nul x tel que d(x) = x ® x; on a alors e(x) = 1.

3) Si D est une cogébre, et si f: D — C est un morphisme de cogebres,
f(D) est une sous-cogebre de C.

4) Soit E un comodule sur C, soit (v;);; une base de E, et soient ¢;; € C
tels que dg(v;) = E ¢ ®v;, cf. n° 1.2, Remarque 3. Il résulte de la
formule (1’) du n° 1.2 que le sous-espace vectoriel Cg engendré par les c;; est
une sous-cogébre de C. Cette sous-cogébre ne dépend pas du choix de la
base (v;), car c’est I’image de l’application E ® E’— C associée a dg
(cf. n° 1.2, Remarque 2). On peut aussi caractériser Cr comme le plus petit
sous-espace vectoriel X de C tel que Im(dz) C X ® E.

Noter que, si D est une sous-cogébre de C contenant Cg, le coproduit dg
applique E dans D ® E, donc munit £ d’une structure de D-comodule;
inversement, tout D-comodule peut évidemment €tre considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogebre Cg contient E. En effet, Cg
est I’'image de £ ® E’ — C,; d’autre part la restriction de e a E est un élément
er de E’ et ’on vérifie tout de suite que, si x € E, 'image de x ® ez dans C
est égale a x.

6) Supposons C de rang fini (sur K), et soit A I’algébre duale
(cf. n°® 1.1, Exemple 3). Les sous-cogebres de C correspondent bijectivement

(par dualité) aux algébres quotients de A (donc aussi aux idéaux bilatéres
de A). '

THEOREME 1. La cogebre C est réunion filtrante croissante de ses sous-
cogebres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogebre de rang fini. Or, d’aprés le corollaire a la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogébre Cr associée a E (cf. Exemple 4) répond a la

question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. DUALITE ENTRE COGEBRES ET ALGEBRES PROFINIES

DEFINITION 2. On appelle algébre profinie une algébre topologique
séparée, compléte, possédant une base de voisinages de 0 formée d’idéaux
bilatéres de codimension finie.
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Il revient au méme de dire qu’une telle algébre est limite projective filtrante
d’algébres de rang fini; d’ou le nom de «profini».

Soit maintenant C une cogébre, et soit A = C’ son dual. La structure de
cogebre de C définit sur A une structure d’algebre (cf. Alg. 1II); d’autre part,
on peut munir 4 de la topologie de la convergence simple sur C (K étant lui-
méme muni de la topologie discréte).

PROPOSITION 1. (a) L’algebre topologique A = C’ est une algébre
profinie. Les idéaux bilatéres ouverts de A sont les orthogonaux des sous-
cogebres de rang fini de C.

(b) Inversement, toute algebre profinie qui est associative et possede un élé-
ment unité est la duale d’une cogeébre possédant une co-unité, définie a
isomorphisme unique pres.

Pour prouver (a), on remarque que C = li_I)n . X, ou X parcourt ’ensemble
ordonné filtrant des sous-cogébres de C de rang fini (cf. th. 1). On a alors
A = li(Ln.X " et les X’ sont des algébres de rang fini. Le noyau de 4 - X"’
est I’orthogonal ay de X dans A4; c’est un idéal bilatére ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.
On a X = (A/a)"; la structure d’algebre de A/a définit sur X une structure
de cogébre, et on en déduit que X est une sous-cogebre de C.

L’assertion (b) est tout aussi évidente.

La correspondance «cogébres < algébres profinies» établie ci-dessus se
prolonge en une correspondance «comodules ¢ modules». De facon précise,
soient

Comf; la catégorie des C-comodules a gauche de rang fini,

Modf1 la catégorie des A-modules a gauche de rang fini, dont I’annu-
lateur est ouvert (i.e. qui sont des A-modules topologiques si on les munit de
la topologie discréte).

Si Ee Comfc, I’application E — C ® E définit par dualité une appli-
cation A ® E’' — E’, et I’on voit tout de suite que cette application fait de E’
un A-module a gauche topologique discret.

PROPOSITION 2. Le foncteur E— E’ défini ci-dessus est une équiva-
lence de la catégorie Com’; sur la catégorie opposée a Mod{;.

C’est immédiat.

Noter aussi que, si F est un A-module a gauche de rang fini, F’ a une
structure naturelle de A°-module a gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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COROLLAIRE. La catégorie Com{: est isomorphe a la catégorie
MOd{qO .

Remarque. Soit E € Com’é; munissons E’ (resp. E) de la structure
correspondante de 4-module & gauche (resp. a droite). Si x € E, x" € E’ et
a,b e A, on a alors les formules:

(D <dg(®¥), a®x'> = <x,ax'> = <xa,x">

et

) <dPX), a® bR x> = <x,abx’> = <xab,x’ >,
avec

dP = ([d® 1g) 0 dg = (lc ® dg) © dg .

2.3. TRADUCTIONS

Tout résultat sur les modules donne, grace a la prop. 2 et a son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) SiEe Com{;, la sous-cogeébre Cr de C attachée a E (cf. n° 2.1) est

la duale de la sous-algebre de End(FE) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n°® 1.4) est la traduction
du fait que A est un A-module projectif (puisque libre de rang 1!).

c) Une cogebre est dite simple si elle est # 0 et n’admet pas d’autre sous-
cogebre que O et elle-méme; c’est alors le dual d’une algébre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogébres simples, et

on verifie alors que ’on peut choisir cette somme de telle sorte qu’elle soit
directe.

On a:

PROPOSITION 3. Pour que Com’é soit une catégorie semi-simple, il
Jaut et il suffit que C soit semi-simple.

De plus, si c’est le cas, et si E, est une famille de représentants des classes

de comodules simples sur C, la cogébre C est somme directe des cogebres
Cg,, qui sont simples.

On a également:

COROLLAIRE. Les conditions suivantes sont éguivalentes:

a) C est somme directe de cogébres de la forme M, (K).
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b) Comé est semi-simple, et tout objet simple de Comf; est abso-
lument simple.

C’est trivial a partir du résultat analogue pour les algébres.

[Noter que ce résultat s’applique notamment a la bigébre d’un groupe réductif
déployé sur K, lorsque car(K) = 0. Mais, bien entendu, il ne donne que la

structure de cogeébre de la bigébre en question, pas sa structure d’algebre.]

d) A tout E e Com’; on peut associer un élément frace 6 € C de la
maniere suivante: E définit un morphisme de cogébres

End(E) — C (cf. n° 1.2)

et ’'on prend I'image de 1z dans C par ce morphisme. En termes d’une
base (v;) de E, et des ¢; € C correspondants (loc. cit.), on a 6y = E Cii.

i
[Voici encore une autre définition: si I’on regarde E comme module sur
Palgebre Cj duale de Cg, on a Cy C End(E), et la forme u — Tr(u), étant
une forme linéaire sur Cg, s’identifie & un élément de Cr qui n’est autre
que 9z.]

PROPOSITION 4. Supposons K de caractéristique 0. Soient E; et
E, deux comodules de rang fini, et soient 6,,0, € C les traces correspon-
dantes. On a 0, = 0, si et seulement si les quotients de Jordan-Holder
de E, et E, coincident (avec leurs mutiplicités).

En effet, le résultat dual (pour les modules de rang fini sur une algebre)
est bien connu (Alg. VIII).

COROLLAIRE. Si E;, et E, sont semi-simples, on a 0, =0, si et
seulement si E, et E, sont isomorphes.

Remarques

1) On peut aussi donner des résultats lorsque car(K) # 0. Par exemple,
si les E, sont des comodules absolument simples deux a deux non iso-
morphes, les 8, correspondants sont linéairement indépendants sur K.

2) Les résultats précédents s’appliquent notamment aux représentations
linéaires d’un schéma en groupes (ou en monoides) affine sur K.

2.4. CORRESPONDANCE ENTRE SOUS-COGEBRES ET SOUS-CATEGORIES
DE Com.

Si D est une sous-cogebre de C, on a déja remarqué que tout D-comodule
peut étre considéré comme un C-comodule. On obtient ainsi un isomorphisme
de Com? sur une sous-catégorie abélienne D de ComZ..
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THEOREME 2. L’application D~ D est une bijection de l’ensemble
des sous-cogébres de C sur ’ensemble des sous-catégories L de Com”.
vérifiant les conditions suivantes:

1) L est pleine (i.e.si E,Fe L, ona Hom(E,F) = HomC(E, F)),
2) L est stable par sommes directes finies,

3) Tout objet de Com{j qui est isomorphe @ un sous-objet, ou a un
objet quotient, d’un objet de L, appartient a L.

[On se permet d’écrire E € L a la place de £ € ob(L).]

Soit ® ’ensemble des L vérifiant les conditions 1), 2), 3). Si L € ©, il est
clair que L est une catégorie abélienne ayant méme sous-objets et mémes objets
quotients que Com{;. On notera C(L) la sous-cogébre de C somme des
cogébres Cg, pour E € L. Le théoréme va résulter des deux formules
suivantes:

a) C(ﬁ) = D pour toute sous-cogébre D de C;
b) C(L) = L pour toute L € ©.

La premiére de ces deux formules est triviale: elle revient a dire que D est
réunion des sous-cogébres Cg, lorsque E parcourt I’ensemble (!) des
D-comodules de rang fini, ce qui a été prouvé au n° 2.1. Pour la seconde, il
suffit de prouver ceci:

LEMME 1. Soit E un comodule de rang fini, soit Cg C C la cogébre
correspondante, et soit F un Cg-comodule (considéré comme C-comodule)
de rang fini. 1l existe alors un entier n >0 tel que F soit isomorphe a un
sous-comodule d’un 'quotient de E",

Par dualité, cela revient a dire que, si B est une algebre de rang fini, et
E un B-module fidele, tout B-module de type fini F est isomorphe & un
quotient d’un sous-module d’un E”. Or F est isomorphe 4 un quotient d’un
module libre B?, et I’on est ramené a prouver que B9 est isomorphe a un
sous-module d’un E7”; il suffit d’ailleurs de le faire pour ¢ = 1. Mais c’est
clair: si E est engendré par xi, ..., x,, I’application b = (bx, ..., bx,) est une
injection de B dans E", puisque E est fidéle. D’ou le lemme, et, avec lui, le
théoréme.

Remarques

1) Le lecteur peut a volonté interpréter Com’é comme une petite
catégorie (relative a un univers fixé, par exemple), ou une grosse. Le
th. 2 est correct dans ’une ou ’autre interprétation.
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2) 11 n’est pas indispensable de passer aux modules pour prouver le
lemme 1. On remarque d’abord (cf. n° 1.4, Exemple 2) que F est isomorphe
a un sous-comodule de Cx ® F, i.e. de (Cg)", avec n = rang(F). D’autre
part, Cg est isomorphe, comme comodule, & un quotient de E® E’,
c’est-a-dire de E™, ou m = rang(E). D’ou le résultat.

Exemples

1) La sous-catégorie de Com’é formée des objets semi-simples corres-
pond a la plus grande sous-cogebre semi-simple de C (la somme de toutes les
sous-cogebres simples).

2) Supposons C semi-simple, et soit (E;);c; un ensemble de repré-
sentants des classes de C-comodules simples. Posons C; = Cg,, de sorte
que C est somme directe des cogébres simples C;. Si J est une partie
de I, C; = Z C; est une sous-cogebre de C, et toute sous-cogébre de C
s’obtient de égt{e maniere, et de facon unique. La sous-catégorie correspondant
a C; est formée des comodules isomorphes a des sommes directes finies
des E;,i € J.

2.5. OU L’ON CARACTERISE Com%,

Soit M une catégorie abélienne munie des deux structures suivantes:

a) M est une catégorie sur K; cela signifie que, si E, F sont des objets de
M, HomM(E, F) est muni d’une structure de K-espace vectoriel, la compo-
sition des morphismes étant bilinéaire.

b) On se donne un foncteur v: M — Vectﬁ de M dans la catégorie des
K-espaces vectoriels de dimension finie.

On fait les Aypothéses suivantes:

(1) Le foncteur v est K-linéaire, i.e. pour tout E, F € M, I’application
v: Hom™(E, F) = Hom (v(E), v(F)) est K-linéaire.

(i) Le foncteur v est exact et fidéle.

THEOREME 3. Sous les hypotheses cz"-dessus, il existe une cogébre C
sur K (et une seule, a isomorphisme pres) telle que M soit équivalente a
Com{;, cette équivalence transformant le foncteur v en le foncteur
C-module — espace vectoriel sous-jacent.

[Ici, il est nécessaire d’interpréter M comme une petite catégorie, ou en tout
cas de supposer qu’il existe un ensemble de représentants pour les classes
d’isomorphisme d’objets de M.]
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Avant de commencer la démonstration, remarquons que les hypothéses (i)
et (ii) entrainent que Hom™(E, F) est un espace vectoriel de dimension finie
pour tout £, F € M. De plus, un sous-objet d’un objet £ de M est connu
lorsqu’on connait le sous-espace vectoriel correspondant de v(£); ’ensemble
des sous-objets de E s’identifie ainsi & un sous-ensemble réticulé de I’ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On
a des résultats analogues pour les objets quotients.

D’autre part, si £ € M, nous noterons My la sous-catégorie pleine de M
formée des quotients F/G, ou F est isomorphe a un sous-objet d’un
E" (n entier > 0 quelconque).

Enfin, si £ est un objet de M, et si X est une partie de ¥V(£), nous dirons
que X engendre E si tout sous-objet F de £ tel que v(F) O X est égal a E.

Démonstration du théoréme 3
a) Le cas fini; une majoration.

C’est celui ou il existe un objet £ de M tel que My = M. Soit n = rangg v(E).

LEMME 2. Soit F  un objet de M pouvant étre engendré par un
élément (cf. ci-dessus). On a

rangx V(F) < n?.

Par hypotheése, on peut écrire F comme quotient F,/F,, ou F; est
isomorphe & un sous-objet d’un E™, pour m convenable. Soit x € v(F)
engendrant F et soit x; un élément de v(F,) dont I’image dans v(F) est x.
Soit G le plus petit sous-objet de E™ tel que v(G) contienne x,. On a G C F,
et 'image de G dans F = Fy/F; est égale & F. 1l suffit donc de prouver que
rangx v(G) < n*. Si m < n, c’est évident. Supposons done que m > n. On a
xy € v(G) Cu(E™) = v(E)™. Soient yi,...,¥, les composantes de x,
considéré comme élément de v(E)™. Puisque m > n, il existe des @; € K, non
tous nuls, tels que ¥ a;y; = 0. Or les 4; définissent un morphisme surjectif
Em™— Ej si N est le noyau de ce morphisme, on a N = E”-!, comme on le
voit facilement. D’autre part, on a x; € v(N), d’ot GC N puisque x;
engendre G. On a donc obtenu un plongement de G dans Em-1. d’ou le
lemme, en raisonnant par récurrence sur 1.

b) Le cas fini; construction d’un générateur projectif.

Les hypothéeses étant les mémes que ci-dessus, on choisit un objet P de M
pouvant étre engendré par un élément x € v(P), et tel que v(P) soit de rang

maximum parmi ceux jouissant de cette propriété. C’est possible en vertu du
Lemme 2.
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LEMME 3. (i) Le couple (P,x) représente le foncteur v.
(i) P est un générateur projectif de M.

Il suffit de prouver (i); ’assertion (i) en résultera, puisque le foncteur v
est exact et fidéle.

Soient donc F € M, et y € v(F). Il nous faut prouver 1’existence et I’unicité
d’un morphisme f:P — F transformant x en y. L’unicité provient de ce
que x engendre P. Pour démontrer Pexistence, soit Q le plus petit sous-objet
de P X F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pr;
est surjectif, du fait que P est engendré par x. On a donc

rangg V(Q) = rangg V(P) ;

mais le caractére maximal de v(P) entraine qu’il y a égalité; le morphisme
Q — P est donc un isomorphisme. En composant son inverse avec la seconde
projection Q — F, on obtient un morphisme f ayant la propriété voulue.

¢) Le cas fini; fin de démonstration.

Soit A D’algébre des endomorphismes de P. C’est une K-algébre de
dimension finie. Le lemme suivant est bien connu:

LEMME 4. 1l existe un foncteur @: MOd{;o — M et un seul (a isomor-
phisme prés) qui soit exact a gauche et transforme A (considéré comme
A-module a droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons briévement la démonstration. Pour chaque A-module & droite
H de rang fini, on choisit une présentation finie de H:

AP—%AQ—)H-—-)()

ou o est une p X g-matrice a coefficients dans 4. Cette matrice définit un
morphisme P? — P9 et ’on prend pour ¢ (H) le conoyau de ce morphisme.
On prolonge de facon évidente ¢ en un foncteur Mod{;o — M et I’on vérifie
qu’il a la propriété voulue. On note généralement ce foncteur H— H & 4 P.
C’est un adjoint du foncteur F— HomM (P, F). Son unicité est immédiate.
Le fait que ce soit une équivalence résulte de ce que P est un générateur
projectif de M.

De plus, I’équivalence ¢: H— H @ 4 P transforme le foncteur «espace
vectoriel sous-jacent & un A-module» en un foncteur isomorphe a v (en effet
le premier foncteur est représentable par A, le second par P, et ¢ transforme
A en P). On peut donc prendre pour cogebre la cogebre duale de I’algebre A4,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X ’ensemble des sous-catégories N de M telles qu’il existe E € M avec
N = My. L’ensemble X est ordonné filtrant puisque Mg, « g, contient Mg, et
Mg,. Si N € X, soit comme ci-dessus (Py, xy) un couple représentant la
restriction 4 N du foncteur v, et soit Ay = End(Py). Si Ny D N,, il existe un
unique morphisme Py, = Py, transformant xy, en xy,; on voit aisément que
ce morphisme identifie Py, au plus grand quotient de Py, appartenant a N,.
En particulier, tout endomorphisme de Py, définit par passage au quotient
un endomorphisme de Py,. D’oi un homomorphisme Ay, = Ay, qui est
surjectif. Si A désigne I’algébre profinie limite projective des Ay, pour
N € X, il est alors clair que la cogébre duale de A répond a la question.

Quant a Punicité de cette cogébre (ou de 1’algébre A), elle provient de la
remarque suivante: A est isomorphe a [’algébre des endomorphismes du
foncteur v, munie de la topologie de la convergence simple.

Remarque. 1l est probablement possible d’éviter le passage par le cas
M = Mg, en utilisant le théoréme de Grothendieck disant qu’un foncteur
exact a droite est proreprésentable: on appliquerait ce théoreme a v, d’ou
P € Pro M représentant v et on obtiendrait 4 comme 1’algébre des endo-
morphismes de P.

§3. BIGEBRES

3.1. DEFINITIONS ET CONVENTIONS

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu’une bigébre sur K est un K-module C muni
d’une structure de cogebre d:C—> C&® C et d’une structure d’algébre
m:C & C— C, ces structures vérifiant I’axiome suivant:

(i) Sil’on munit C ® C de la structure d’algébre produit tensoriel de celle
de C par elle-m€me, d est un homomorphisme d’algébres de C dans C R C.

Cet axiome équivaut d’ailleurs a:

(i") L’application m: C @ C — C est un morphisme de cogébres (pour la
structure naturelle de cogebre de C Q C).

Dans tout ce qui suit, nous réserverons le terme de bigébres a celles vérifiant
les conditions suivantes:

(i) La cogebre (C, d) posséde une co-unité e: C — K.

(i) L’algebre (C, m) est commutative, associative, et posséde un élément
unité 1.
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(iv) La co-unité e: C — K est un morphisme d’algébres et e(1) = 1.
(v) Onad(l)=1Q 1.

La condition (iii) permet de considérer C comme 1’algébre affine d’un schéma
affine G sur K; on a G = Spec(C). Pour tout K; € Algg, on note G(K;)
I’ensemble des points de G a valeurs dans K;, autrement dit I’ensemble des
morphismes (au sens de Algg) de C dans K,;. La condition (iv) signifie
que e est un élément de G(K). Grace aux conditions (i) et (v), la structure de
cogebre de C peut €tre interprétée comme un morphisme de G X G dans G,
qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoides sur K; pour tout K; € Algg, G(K;) a une structure naturelle de
monoide, d’élément neutre I’image de e dans G(K,), image que 1’on se
permet de noter encore e.

On appelle inversion sur C, toute application i: C — C ayant les propriétés
suivantes:

a) I est un morphisme d’algeébres, et i(1) = 1.

b) mo(lc®i)cd est égal a ’endomorphisme c—e(c).1 de C.
La condition a) permet d’interpréter i comme un morphisme /: G — G et la
condition b) signifie que x.I(x) = e pour tout x € G(K;), et tout K;. On voit
ainsi que, si 7 existe, il est unique, et que c’est un isomorphisme de C sur la

bigebre opposée C°. L’existence de i revient a dire que G est un schéma
en groupes.

Remarque. L1’application identique C — C est un point de G(C), appelé
point canonique; nous le noterons y. De méme, on peut interpréter une
inversion i de C comme un point 1 de G(C) et la condition b) signifie que
Y1 = e.

3.2. CORRESPONDANCE ENTRE COMODULES ET G-MODULES

Soit £ un module. Si K, € Algg, nous noterons Endz(K;) le monoide des
endomorphismes du K;-module K|, & E, et Autz(K;) le groupe des éléments
inversibles de Endz(K;). Si K; = K, est un morphisme, on définit de maniére
é¢vidente le morphisme correspondant de Endz(K;) dans Endg(K,). Ainsi
Endg est un foncteur de Algx dans la catégorie Mon des monoides; de méme
Autz est un foncteur de Algyx dans la catégorie Gr des groupes.

Soient maintenant C et G = Spec(C) comme ci-dessus. On a vu que G
définit un foncteur (noté également G) de Algx dans Mon; ce foncteur est a
valeurs dans Gr si G est un schéma en groupes.

DEFINITION 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur Endg.
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En d’autres tefmes, p consiste en la donnée, pour tout K; € Algg, d’un
morphisme de monoides p(K;): G(K;) > Endg(K;) et, si K; = K; est un
morphisme dans Algg, le diagramme

GKK,) — GK)
p(kKy) L p(Ky)
Endg(K;) — Endg(K3)

doit étre commutatif.

Terminologie. Une représentation linéaire du monoide G° opposé a G
est appelée une antireprésentation de G. Un module £, muni d’une repre-
sentation (resp. antireprésentation) G — Endy est appelé un G-module a
gauche (resp. a droite).

Remarque. Si G est un schéma en groupes, et si p: G = Endz est une
représentation linéaire de G dans E, il est clair que p prend ses valeurs dans
le sous-foncteur Auty de Endg.

Notons maintenant G le foncteur G, considéré comme foncteur a
valeurs dans Ens (i.e. le composé Algx 4 Mon — Ens); définissons de méme
End}”. Soit p un morphisme de G¢* dans End}". L’image par p(C) du
point canonique Yy € G(C) est un C-endomorphisme de C Q E, donc est
définie par une application K-linéaire d(p): E—~> C R E.

PROPOSITION 1. (a) L’application pt— d(p) est une bijection
de [l’ensemble des morphismes de G dans Endy® sur ensemble
Hom(E, C Q E).

(b) Pour que p:G — End7" soit une représentation linéaire (resp.
une antireprésentation linéaire) de G dans E, il faut et il suffit que d(p)
munisse E d’une structure de C-comodule a droite (resp. & gauche).

C’est 1a un résultat bien connu (cf. SGAD, exposé I). Rappelons la
démonstration:

L’assertion (a) provient de ce que G°"s est représentable par le couple
(C, v). En particulier, si x € G(X;), I"image de x par p(K;) est I’application
K;-lin¢aire de K; ® E dans K; ® E qui prolonge I’application linéaire
(x® 1) o d(p) de E dans K, R E.

Pour (b), on peut se borner au cas des antireprésentations. Il faut d’abord
exprimer que p(K;) transforme e en 1 pour tout K, et il suffit de le faire
pour K; = K. Cela donne la condition

(e ®1z) 0 d(p) = 15
qui est ’axiome (2) des comodules.
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Il faut ensuite exprimer que le diagramme

Gens x Gens "5 Bpd™ x End o™
a | LB
Gens 5 End ™

(ou a désigne la loi de composition de G et B 'opposée de la loi de
composition de Endg) est commutatif. Notons vy; (resp. 7Y,) I’homo-
morphisme de C dans C @ C qui applique x € C dans x ® 1 (resp. 1 ® x);
onavyp, Y, € G(CQ® C). De plus, il est immédiat que le foncteur G X GePs
est représentable par (C & C, v; X v3). Il suffit donc d’exprimer que les deux
images de vy, X vy, dans Endz(C &® C) coincident. Or I’image de y; X 7y, dans
G(C®C) est le point donné par d:C— C® C; son image dans
Endz(C ® C), identifié a Hom(E, C ® C ® E) est donc (d ® 1g) o d(p). 1l
faut ensuite calculer I"image de y, X v, par G X G 5P Endy X Endg % End E-
On trouve, aprés un calcul sans difficultés [cf. ci-apres] 1’élément
(1 ® d(p)) © d(p). La commutativité du diagramme considéré équivaut
donc a I’axiome (1) des comodules, ce qui achéve de démontrer la proposition.

[Voici le «calcul sans difficultés» en question. Il s’agit de déterminer
I’image ¢ € Endz(C ® C) de v, X v, par B o (p X p). Si ¢, (resp. ¢,) est
I’image de vy, (resp. v,) par p, on a ¢ = @, © ¢ (puisque B est ’opposée de
la loi de composition). De plus, ¢; est caractérisé par le fait de prolonger
I’application K-linéaire (v, @ 1) od(p):E-CRQE->C®R CQ® E. Soit
alors x € E, et posons:

dp))=Ya®xi, dp)x)=Yc ®x;.

On a:
¢ =MnOI)(Ec®x) = La®1Qx.
De méme:
02(x) = Y1 ® ¢ ® x5 .
D’ol:

0 = 02(01 (@) = LT 02(c; ® 1 @ x7)
' = Z (C,' ® 1) . E 1 ® Cij ® Xij (([)2 étant C ® C—linéaire)
= Zci®cij®xij~
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D’autre part, on a
((1c® d(p) © d(P)) () = (Ic ® d(p)) (X ¢ ® xi)
=Ya®c ®xy.
En comparant, on voit bien que ’on a

0=0c®d(P)cdp .]

Remarque. La proposition précédente permet donc d’identifier les
G-modules ¢ gauche aux C-comodules a droite, et inversement. [Il est bien
triste d’avoir ainsi & échanger sa droite et sa gauche, mais on n’y peut rien.
Toutefois, lorsque G est un schéma en groupes, on peut, au moyen de l’inverse,
transformer canoniquement tout module & droite en un module a gauche.]

Exemple. La représentation triviale p =1 de G dans un module E
correspond a la structure de comodule x— 1 @ x sur E. Pour £ = K on
obtient le comodule unizé.

OPERATIONS SUR LES COMODULES

a) Produit tensoriel.

Si E, et E, sont des C-modules (a gauche, par exemple), on a défini
au n° 1.2 une structure de C & C-comodule sur E; ® E,. Comme
m:C ® C— C est un morphisme de cogebres, on déduit de 1a une structure
de C-comodule sur E; ® E,. Du fait que m est commutative, cette structure
ne dépend pas de D’ordre dans lequel on écrit E; et E,. Elle correspond
(via la prop. 1) a Popération évidente de produit tensoriel de G-modules (la
vérification de ce fait est immédiate).

b) Contragrédiente.

Supposons que C admette une inversion, et soit £ un C-comodule & gauche
qui est projectif de type fini comme module. En utilisant les isomorphismes

Hom(E, C® E) = Hom(E ® E’, C) = Hom(E’,C ® E’)

on définit sur £’ une structure de C-module a droite. En utilisant I’inver-
sion 7, on transforme cette structure en une structure de C-comodule & gauche,
dite contragrédiente de celle donnée sur E et notée E. Elle correspond (via la
prop. 1) a ’opération évidente de «contragrédiente d’une représentation.

[L’hypothése faite sur E sert a assurer que le foncteur «dual» commute au
foncteur «extension des scalaires».]
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3.3. SOUS-BIGEBRES

(On suppose a nouveau que K est un corps.)
Soit C une bigebre (vérifiant les conditions du n° 3.1), et soit L une sous-
catégorie abélienne de Com’é vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d’une sous-cogébre D de C.

PROPOSITION 2. Pour que D soit une sous-bigébre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le
comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par ® et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogébres Cg attachées
aux comodules £ € L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

LEMME 1. Si E et F sont des comodules de rang fini, on a
(*) CE@F:CE-CF-

En effet, on vérifie tout de suite que Cr ® Cr est la sous-cogébre de C ® C
attachée au C ® C-comodule E ® F. Comme Cggr est I'image de cette
derniere par m: C ® C — C, c’est bien Cg.Cr.

Le fait que D contienne 1 provient de ce que Cr = K.1 si £ = K.

PROPOSITION 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
«contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Ce=i(Cg) .

COROLLAIRE. Supposons que G = Spec(C) soit un schéma en
groupes. Soit Mod{; la catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Modé. Pour qu’il existe un quotient H
de G tel que L = Mod%, il faut et il suffit que L vérifie les condi-
tions 1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations
«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n’est qu’une reformulation des props. 2 et 3, étant entendu que
«groupe quotient» est pris pour synonyme de «sous-bigebre contenant 1».
L’unicité de H provient du th. 2 du n° 2.4.
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[I1 y a un résultat plus général, di sauf erreur a Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme
ici, une sous-cogébre d’une bigébre, on se donne seulement une cogébre D et
une opération de «produit tensoriel» sur la catégorie M = Com?, corres-
pondante (la donnée de D est d’ailleurs équivalente a celle du couple formeé
de M et du foncteur v: M — Vectg, cf. n® 2.5, th. 3). En imposant
a ce produit tensoriel des conditions raisonnables (en particulier
V(E Q F) =v(E) ® v(F)) on démontre alors qu’il provient d’une structure de
bigébre bien déterminée sur D; cette bigébre a un élément unité si M contient
un €élément unité pour le produit tensoriel; elle a une inversion, si I’on se donne
une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur « Hom».)

Grothendieck a rencontré cette situation avec K = Q, M = catégorie des
motifs sur un corps de base k et v = foncteur «cohomologie a valeurs
dans Q» relativement a un plongement de k£ dans C.]

3.4. UNE INTERPRETATION DES POINTS DE G

Soit K; € Algg et soit g € G(K;) un point de G a valeurs dans K;. Pour
tout E € Com{;, notons g(E) I’image de g par I’antireprésentation

P(E): G(K1) = Endg(K;) .
On a donc g(F) € Endg(K;) = Endg (K; ® E), et de plus:
(1) gK) = I,

(i) g(E ® Ey) = g(E1) ® g(Ey).
Réciproquement:

PROPOSITION 4. Soit Vg, Com{:—+ Modk, le foncteur qui associe a
tout E e Comy le Ki-module K, ® E. Soit ¢:vx,— vy, un endo-
morphisme de vk, vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(K,) tel que ¢ = g.

D’aprés 3.2, I’application G(K;) — End (v k,) €st un antihomomorphisme
de monoides. La prop. 4 donne donc:

COROLLAIRE. Le monoide G(K,) est isomorphe a I’opposé du
monoide des endomorphismes de Vg, Vvérifiant (i) et (ii).

[C’est 1a un résultat analogue au théoréme de dualité de Tannaka; on
reviendra la-dessus plus loin.]
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Remarques

1) Dans I’énoncé de la prop. 4, on peut remplacer Com’é par Comc;
cela revient au méme, du fait que tout objet de Com, est limite inductive
d’objets de Com”., cf. §1.

2) Lorsque G est un schéma en groupes, les g(E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(i) g(&) = g(E)".
Démonstration de la proposition 4.

Tout d’abord, soit ¥ € Hom(C, K;). Pour tout £ € Com¢, soit ¢,(E)
I’endomorphisme de K; ® E qui prolonge I’application linéaire

EXcES KQE.

On obtient ainsi un endomorphisme ¢, de v, .

LEMME 1. L’application u— ¢, estun isomorphisme de Hom(C, K;)
sur le groupe des endomorphismes du foncteur vg,.

[En fait, c’est un isomorphisme de K;-algébres, a condition de mettre sur
Hom (C, K,) la structure d’algébre opposée de celle a laquelle on pense.]

Si @ € End(vk,), formons le composé
C—K & C—K, X C — K,
(la premiére application étant x — 1 ® x, la seconde ¢(C) et la troisieéme
1 ® ¢). On obtient une application linéaire
u(p): C - K, .

Il suffit de prouver que les applications u— @, et @ = u(p) sont inverses
I’une de 'autre.
Tout d’abord, si u € Hom(C, K,), u(p,) est le composé

d u®1 I1®e
Co-CRC - K ®C — K,
ou encore
d 1Qe u
C-CRC - C—K,

c’est-a-dire u.

Soit maintenant ¢ € End(vg,). Si E est un comodule, et ¥ un K-espace
vectoriel, on a O(EQ® V) = ¢(E) ® 1y. (Se ramener au cas ou V est de
dimension finie, puis choisir une base de V et utiliser le fait que ¢ est un
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morphisme de foncteurs.) En particulier, on a P(CRE)=0¢(C)® lg si
E € Comc. Comme dg: E— C® E est un morphisme de comodules, on a un
diagramme commutatif:

12

E - KQE Ki®QCQRE

oE) | eC)® 11
K®E = KQ®COE

E

105 KQE.
Mais le composé (1 ®e® 1) o (1 ® dg) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
®(E)

E-K ®FE — K QE

est égal a 9,(E), avec u = u(@), d’ou le lemme.

[Ce lemme n’a rien a voir avec les bigeébres. On aurait pu le remonter
au §2 et le déduire de I’isomorphisme Com¢ = Com7”, du n° 2.2.]

LEMME 2. (a) Pour que ¢, vérifie la relation (i), il faut et il suffit
que u(l) =1.

(b) Pour que ¢, vérifie la relation (ii), il faut et il suffit que u soit
un homomorphisme d’algébres. |

Si ’on prend pour E le module unité K, on a K; ® E = K; et ¢,(E) est
la multiplication par u(1) dans K;; d’ou (a).

Pour (b), on remarque d’abord que (ii) est vérifiée si et seulement si elle
I’est pour E; = E, = C, i.e. si

(i) 0u(C® C) = 0u(C) @ 9u(C).

Cela résulte simplement de ce que tout comodule est isomorphe a un sous-
comodule d’une somme directe de comodules tous isomorphes a C.

Reste a exprimer la condition (ii’). Soit (x;);<; une base de C, soient
a,b e C, et écrivons d(a) et d(b) sous la forme

da)=Ya®x, aeC
d(b)=Ebj®xj, bJ'EC.
On a alors:

0.(C)(@) = Yu(a)®x;, avec u(a) €Kk
et

0.(C)(D) = Yub)®x;, avec u(b;)ek,.
D’ou:

*) (0(C) ® 0.(C) (@ ® b) = Y, u(@)ud;)  x; ® x; .

ij
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Soit d’autre part d’': C ® C—> C ® C ® C le coproduit du comodule C ® C.
On vérifie sans difficulté que 'on a
d@®b) =) ab;®x®x;,
iJ
d’ou
(**) 0 (CRC)a®Db)= ) ul@b) ®xQx; .
iJ
En comparant (*) et (**), on voit que ¢,(C ® C) = ¢,(C) ® ¢,(C) si u est
un homomorphisme d’algebres. Pour prouver la réciproque, choisissons pour
(x;); <7 une base telle que x, = 1 pour un élément 0 € I et e(x;) = 0 pour
i#0. On a alors q,=a et b, = b, et 1’égalité de (*) et (**) entraine
u(a)u(b) = u(ab), ce qui acheve la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.
En effet, un ¢lément de G(K,) est par définition un homomorphisme
d’algébres u: C — K, tel que u(l) = 1. La seule chose a vérifier, c’est que,
pour tout comodule E, I’endomorphisme u(E) de K, ® E défini par u est
égal a @,(E): or c’est justement la définition de u(E), cf. démonstration de
la prop. 1.

Exemple. Prenons pour K, l’algebre des nombres duaux sur K. La
prop. 4 fournit alors un anti-isomorphisme de /’algebre de Lie de G sur la sous-
algébre de Lie de End(v) formée des endomorphismes 6 de v tels que

0(K)=0 et BE®E)=0E)® L+ 1z ® 0(E) .

3.5. INTERPRETATION DE (G COMME LIMITE PROJECTIVE DE GROUPES
ALGEBRIQUES LINEAIRES

DEFINITION 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algébre sur K.

PROPOSITION 5. Soit C une bigébre (resp. une bigébre possédant une
inversion ). Alors C est limite inductive filtrante de ses sous-bigébres de type
fini contenant 1 (resp. et stables par i).

L’énoncé contenant les «resp.» équivaut a:

COROLLAIRE. Le schéma en groupes G associé a C est limite
projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit £ un C-comodule (4 droite, pour
changer un peu) de rang fini et soit Cg la sous-cogebre de C correspondante.
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- n
Pour tout n > 0, soit Cg(n) la sous-cogebre attachnée au comodule & E;

pour n = 0, on convient comme d’ordinaire que ® E = K, de sorte que
Cr(0) = K.1. On sait (cf. lemme 1) que

Cr(n) = Cg...Cr  (n facteurs) .

Il en résulte que

CE)= Y Cu(n)
n=20

est la sous-algébre de C engendrée par Cg et 1. D’ou:

PROPOSITION 6. L’algébre C(E) est une sous-bigébre de C conte-
nant 1 et de type fini; c’est la plus petite sous-bigébre de C contenant 1
et Cg.

Comme C est visiblement limite inductive des C(F), cela démontre la
premiere partie de la prop. 5. D’autre part, lorsque C possede une
inversion i, la seconde partie de la prop. 5 résulte de la proposition plus précise
(mais évidente) suivante:

PROPOSITION 7. L’algebre C(E @ l\f) est une sous-bigebre de C
contenant 1 et stable par i; c’est la plus petite sous-bigebre de C ayant
ces propriétés; elle est de type fini.

Si ’on note Xg (resp. Gg) le monoide (resp. groupe) algébrique linéaire
associé¢ a C(E) (resp. a C(E @ E)), on voit que ’on a

G = ligl.XE (resp. G = Ign.GE) .

Remarques

. vV \ . . .
1) La construction de C(E @ E) a partir de C(E) peut aussi se faire de
la maniere suivante: au G-module E est associé un élément «déterminant»
dg, qui est un élément inversible de C, contenu dans C(E). On a:

v 1
C(E® E) = C(E) [—] .
Og

2) L’interprétation de X et Gg en termes de schémas est la suivante:
Xg (resp. Gg) est le plus petit sous-schéma fermé du schéma Endg (resp.
GLr) des endomorphismes (resp. automorphismes) de E contenant I’image de
la représentation p: G — Endy attachée & E. Cela se vérifie immédiatement
sur la construction de I’algébre affine de Endy (resp. Gg), construction que
le rédacteur trouve inutile de reproduire.
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DEFINITION 3. Soit C une bigebre possédant une inversion. Un
C-comodule E de rang fini est dit fidéle si C(E® E) = C

Vu ce qui précede, E est fidéle si et seulement si G = Gg est un isomor-
phisme.

PROPOSITION 8. Si E est fideéle, toute représentation linéaire de G est
quotzent d’une sous-représentation d’une somme directe de représentations

®(E @ E).

Cela résulte du lemme 1 du n° 2.4.

COROLLAIRE. Tout G-module simple est quotient de Jordan-Hélder
dun ® (E@ E).
Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-

sorielles de E @ E par les représentations ® E ® det(E) -, avec des
notations évidentes.

2) Il se peut que Gy soit fermé dans Endg (et non pas seulement dans
GLz), autrement dit que C(£) = C(E @ 133/) C’est le cas, par exemple, si Gg
est contenu dans SLz. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E @l\:} par celles de E.

§4. ENVELOPPES

4.1. COMPLETION D’UNE ALGEBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algebre associative a ¢€lément unité. Soit S, (resp. S, S)
I’ensemble des idéaux a droite (resp. a gauche, resp. bilatéres) de codimension
finie dans A. On a S; N S; = S et S est cofinal & la fois dans S, et dans S,;
en effet, si a € S, par exemple, I’annulateur du 4-module A/a appartient a S
et est contenu dans a.

On posera:

A =1lim.A/a
«

la limite projective étant prise sur I’ensemble ordonné filtrant S. L’algebre A
est [’algébre profinie complétée de A, pour la topologie définie par S (ou S,,
ou S,, cela revient au méme). Il y a un isomorphisme évident de la catégorie
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des A-modules de rang fini sur celle des A-modules topologiques discrets de
rang fini.

Soit F le dual de 4; on le munit de sa structure naturelle de A-bimodule.
Si a € S, soit F, I'orthogonal de a dans F. Soit C la réunion des Fy, pour
a €S. Le dual de C (resp. le dual topologique de AA) s’identifie de fagon
évidente a A (resp. a C). D’aprés le n°® 2.2, il y a donc sur C une structure
de cogeébre, caractérisée par la formule:

() <d(@,a®b>=<c,ab> si ceC,a,beA.

De plus, tout A-module a droite de rang fini est muni canoniquement d’une
structure de comodule a gauche sur C, et réciproquement; on a

(2) <dg(x),a@®x'>=<xa,x'> si xeEx"eE',aeA

d’aprés la formule (1) du n° 2.2.
Les éléments de la cogeébre C peuvent &tre caractérisés de la maniere
suivante:

LEMME 1. Soit f un élément du dual F de A. Les conditions
suivantes sont équivalentes:

(@) feC.

(b) (resp. (b")) Le sous-A-module a gauche (resp. a droite) de F
engendré par f est de rang fini.

(¢c) Il existe un A-module a droite E de rang fini, et des éléments
xi€ E,x[ € E' en nombre fini, tels que
<\f, a> =Y <xa,x;> pourtout acA.

La condition (b) signifie que I’annulateur de f dans le A-module a
gauche F appartient & S,;; comme S est cofinal dans S,, cela revient a dire
que f appartient 4 C. On démontre de méme que (a) & (b*).

D’autre part, pour un module £ donné, la condition (c) signifie que f
appartient a la sous-cogébre Cr de C attachée a E (cf. n° 2.1). Comme C est
réunion des Cg, cela prouve que (a) & (c).

[On laisse au lecteur le plaisir de démontrer directement I’équivalence
(b) & (0).]

4.2. LA BIGEBRE D’UN GROUPE

On applique ce qui précéde a I’algébre 4 = K[I'] d’un groupe I'. Le dual
F=F) de A est Iespace des fonctions sur T'; la dualité entre A et F
s’exprime par la formule:

<[ LAvi> =Y Aif(v)) si feF,AeK,y,el.
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La cogebre correspondante est notée C = C(I'). Elle jouit des propriétés
suivantes:

(i) La co-unité de C est I’application e: f — f(1).

(i) Pour qu’une fonction f appartienne a C, il faut et il suffit que ses
translatées (a gauche ou a droite) engendrent un K-espace vectoriel de
dimension finie. (C’est I’équivalence (a) ¢ (b) du Lemme 1.)

(iii) Identifions a la fagon habituelle les éléments de F ® F aux fonctions
décomposablessurI' X T'.Si f e C,onad(f) e C® Cet C® C est un sous-
espace de F ® F; ainsi d(f) peut étre interprétée comme une fonction sur -
I'XT. On a:

(3) d(f)(vi,v2) = f(yiv2) st vi,v2€T .

(Cela ne fait que traduire la formule (1) du n° précédent.)

(iv) C contient 1, et est stable par le produit: cela résulte de (ii).

(v) Les structures de cogébre et d’algebre de C sont compatibles entre
elles, i.e. elles font de C une bigebre. Cette bigebre vérifie les axiomes du
n° 3.1. (L’axiome (i) dit que f+— d(f) doit étre un morphisme d’algébres;
c’est le cas. Les autres axiomes sont encore plus évidents.)

(vi) La bigeébre C possede une inversion i donnée par

4 HM=s50"".

(Il faut vérifier les conditions (a) et (b) du n° 3.1. La condition (a) est
é¢videmment satisfaite. Pour (b), soit f € C et écrivons d(f) sous la forme

Y g ® hy. On a

' (le®@DE() = ¥ 8 ® i(hy)
et I’on doit voir que Y g,.i(hy) =e(f).1. Or,siy eI, on a
Y e ithe) (v) = L 8a(Mha(y= 1) =d(f)ly,y™ 1)
= fly.y ) =) =e(f),

d’ou la formule voulue.)

(vil) Soit G = Spec(C) le schéma en groupes attaché a C. Tout élément
v € I' définit un morphisme f— f(y) de C dans K, donc un élément du
groupe G(K) des points de G a valeurs dans K. L’application T = G(K) ainsi
définie est un homomorphisme; cela résulte de la définition de la loi de
composition de G(K).
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(viii) D’apres le n° 4.1, tout I'-module & droite E de rang fini est muni
canoniquement d’une structure de C-comodule & gauche de rang fini (et
inversement). Plus précisément, si (v;);<; est une base de E, et si I’on a
(5) vy = Y cij(y)v;, avec c¢;eC,

jel
le coproduit de E est donn¢ par:
(6) dp(v;)) = Y ¢; ®v; .
jel

(ix) La correspondance définie ci-dessus entre I'-modules a droite de rang

fini et C-comodules a gauche de rang fini est compatible avec les opérations

«produit tensoriel» et «contragrédiente»; cela résulte de ce qui a été dit au
n° 3.2, combiné avec (vii) ci-dessus.

Remarque. On peut caractériser G = Spec(C) par la propriété universelle
suivante: tout homomorphisme de I" dans le groupe H(K) des K-points d’un
schéma en groupe affine H se prolonge de maniére unique en un morphisme
G — H. Le foncteur I' = G est donc adjoint du foncteur H +— H(K).

4.3. L’ENVELOPPE D’UN GROUPE RELATIVEMENT A UNE CATEGORIE DE
REPRESENTATIONS

On conserve les notations du numéro précédent.

DEFINITION 1. Soit L une sous-catégorie pleine de la catégorie -des
I'-modules a gauche de rang fini. On dit que L est saturée si L vérifie les
conditions suivantes.:

a) Si EelL etsi F estisomorphe, soit @ un quotient de E, soit a
un sous-objet de E, ona FelL.

b) L est stable par somme directe finie, produit tensoriel et contra-
grédiente.

¢) La représentation unité (de module K) appartient a L. (Bien
entendu, on a une notion analogue pour les I'-modules & droite.)

THEOREME 1. Si L est saturée, il existe une sous-bigebre C; de
C(T') et une seule telle que L soit la catégorie des C.-comodules a droite

de rang fini. La bigébre C, contient I’élément 1, vérifie les axiomes du
n° 3.1, et est stable par l’inversion i.

Cela résulte des props. 2 et 3 du n° 3.3.
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DEFINITION 2. Le schéma G = Spec(C;) est appelé I’enveloppe de T
relativement a la catégorie saturée L.

Les propriétés suivantes de G, résultent de sa définition et de ce qui a été
démontré dans les paragraphes précédents:

a) Gy est un quotient du schéma en groupes G défini au n° précédent.

b) On a un homomorphisme canonique I' = G (K). De plus, tout sous-
schéma fermé de G; contenant ’image de I' est égal a G, (cela exprime
simplement le fait que les éléments de C, sont des fonctions sur T'). En
particulier, ’image de I" dans G (K) est dense pour la topologie de Zariski.

c¢) Le schéma G; est absolument réduit.

d) La bigébre C; est réunion des cogebres Cg attachées aux éléments £
de L.

e) Si E € L, soit G I’image de la représentation p: G; = GLg attachée
a E (cf. n°® 3.5). Le groupe Gz est I’adhérence (pour la topologie de Zariski)
de I'image de I' dans GLg(K) = Aut(E).

f) Soient E, E, € L. Pour qu’il existe un morphisme Gg, — Gg, tel que
le diagramme

v ~
Ge (K) = Gg(K)

soit commutatif, il faut et il suffit que £, soit isomorphe a un quotient d’une

Vv
sous-représentation d’une somme directe de représentations & "(E; @ Ei).
L’homomorphisme Gg, = Gg, est alors unique.

g OnadgG-= lig_n.GE (vis-a-vis des morphismes définis ci-dessus).

h) Soit K; € Algg et soit vk, le foncteur de L dans Modg, défini
par E—~ K, ® E. 11 y a une bijection canonique (cf. n° 3.4) du groupe
G, (K,) sur le groupe des automorphismes du foncteur vg, commutant au
produit tensoriel et triviaux sur le module unité K.

Remarque. La détermination explicite de G, (pour I' et L donnés) est
souvent un probléme non trivial. On en verra quelques exemples au §5 (voir
aussi les exercices du §4).

Exemples

a) On peut prendre pour L la catégorie de foutes les représentations
linéaires de T'; le groupe G est alors le groupe G du numéro précédent.
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b) Supposons que K soit un corps topologique (resp. un corps valué
complet non discret) et que I soit muni d’une structure de groupe topologique
(resp. de groupe de Lie sur K). On peut prendre pour L la catégorie des
représentations continues (resp. K-analytiques) de rang fini. Une fonction
f € C appartient a la bigebre C, correspondante si et seulement si elle est
continue (resp. analytique): cela se vérifie sans difficulté. Le schéma G, est
appelé simplement /’enveloppe du groupe topologique I' (resp. du groupe de
Lie T'). On peut le caractériser par la propriété universelle suivante: si A est
un groupe algébrique linéaire, tout homomorphisme continu (resp. analytique)
de T dans le groupe topologique (resp. de Lie) H(K) se prolonge de facon
unique en un morphisme de G, dans H. Cela résulte simplement de la
description de C; donnée ci-dessus.

On notera que, méme lorsque I' est un groupe de Lie connexe de dimension
finie, son enveloppe n’est pas en général un groupe algébrique (i.e. G, ne
possede en général pas de module fidéle, cf. exercice 1).

¢) Soit k£ un corps complet pour une valuation discreéte; on suppose k
d’inégale caractéristique et de corps résiduel algébriquement clos. Soit k une
cloture algébrique de k et soit I’ = Gal(lz/k). Prenons pour K le corps Q,
(p étant la caractéristique résiduelle de k), et pour L la catégorie des
Q,-représentations de I' qui ont une «décomposition de Hodge» au sens de
Tate (Driebergen). La catégorie L est saturée. Le groupe G; correspondant
est fort intéressant [du moins pour le rédacteur — les auditeurs du Collége,
qui I’ont subi pendant trois mois, sont peut-étre d’un avis différent].

§5. GROUPES COMPACTS ET GROUPES COMPLEXES
Dans ce paragraphe, le corps de base est R ou C.

5.1. ALGEBRICITE DES GROUPES COMPACTS

PROPOSITION 1. Soit K un groupe compact, opérant linéairement et
continilmment sur un espace vectoriel réel V de dimension finie. Toute orbite
de K dans V est fermée pour la topologie de Zariski de V (relativement
a R).

Soit x € V, et soit y un point de ¥ n’appartenant pas a I’orbite Kx de x.
Il nous faut construire une fonction polynomiale P sur ¥ qui soit nulle

sur Kx et non nulle en y. L’existence d’une telle fonction résulte du lemme plus
précis suivant:
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LEMME 1. Il existe une fonction polynomiale P sur V qui prend les
valeurs 0 en x et 1 en y et qui est invariante par K.

Puisque Kx et Ky sont fermés et disjoints, il existe une fonction continue
réelle f sur V qui vaut O sur Kx et 1 sur Ky. Comme les fonctions polynomiales
sont denses dans les fonctions continues (pour la topologie de la convergence
compacte), il existe une fonction polynomiale F sur ¥V qui est < 1/3 sur Kx
et = 2/3 sur Ky. Soit dk la mesure de Haar de K, normalisée de telle sorte
que sa masse totale soit 1. La fonction F’ définie par

F'(v) = § F(k.v)dk

K

est une fonction polynomiale invariante par K; si a (resp. b) désigne la valeur
de F’ sur ’orbite Kx (resp. Ky), onaa < 1/3 et b >2/3, dou a # b. La

r

fonction P = répond alors a la question.

b—a

COROLLAIRE. L’image de K dans Aut(V) est fermée pour la
topologie de Zariski de End(V) et a fortiori pour celle de Aut(V)].

En effet, K opere linéairement sur End (V) par
k,wy—k.u si keK,ueEnd(V),

et K est ’orbite de 1, € End(V); on peut donc appliquer la proposition a
I’espace vectoriel End (V).

PROPOSITION 2. Soit G un groupe algébrique linéaire sur R, et soit
K un sous-groupe compact de G(R). Soit H le plus petit sous-groupe
algébrique réel de G contenant K. On a alors

K = HR) .

En effet, on peut plonger G comme sous-groupe algébrique fermé dans un
groupe linéaire GL,; la proposition résulte alors du corollaire ci-dessus.

Remarque. Le groupe H peut aussi ére défini comme P'adhérence de K
dans G (pour la topologie de Zariski); il est en effet immédiat que cette
adhérence est un sous-schéma en groupes de G. La bigébre de H est le quotient
de celle de G par I’idéal formé des fonctions dont la restriction a X est nulle.
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5.2. L’ENVELOPPE D’UN GROUPE COMPACT

Soit K un groupe compact. Considérons la catégorie L des représentations
linéaires continues réelles de rang fini de K. Cette catégorie est saturée
(cf. n° 4.3). Nous noterons G le schéma en groupes correspondant (sur R)
et C sa bigebre. On dit que G est ’enveloppe de K, cf. n® 4.3, exemple b).
Rappelons (loc. cit.) qu'une fonction réelle f sur K appartient a C si et
seulement si elle vérifie les deux conditions suivantes:

a) Les translatées de f (a gauche, par exemple) engendrent un espace
vectoriel réel de rang fini.

b) f est continue.

Rappelons également que I’on a défini un homomorphisme canonique

K- GR).

THEOREME 1. L’homomorphisme K — G(R) est un isomorphisme.

L’injectivité résulte du théoréme de Peter-Weyl, que ’on admet.

Pour prouver la surjectivité, écrivons G comme limite projective des
groupes algébriques Gg attachés aux éléments de L (cf. n° 4.3). On a
évidemment °

GR) = li(}_n.GE(R) ‘

D’autre part, d’aprés la prop. 2, tous les homomorphismes
K- Gez(R)

sont surjectifs. Il en est donc de méme (grice a la compacité) de
K- IEn.GE(R), d’ou le théoréme.

PROPOSITION 3. Soit E e L. Pour que E soit une représentation
fidéle de K (au sens usuel, i.e. le noyau de K — Aut(E) doit étre réduit a
{1}), il faut et il suffit que E soit fidele comme C-comodule (cf. n° 3.5).

Si E est fidéle comme comodule, G s’identifie a Gg, donc K s’identifie a
Gz(R) et il est clair que E est fidéle comme représentation de K.

La réciproque provient de ce qui a été démontré au n° 3.5 , combiné avec
le lemme suivant:

LEMME 2 (Burnside). Si E est fidele, toute representatzon irréductible

continue de K est un facteur d’une représentation ® E, avec n>0
convenable.
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Soit F une telle représentation, et soit y le caractére d’une composante
irréductible de C ® F. Si F n’était facteur d’aucune puissance tensorielle de
E, les formules d’orthogonalité des coefficients de représentations mon-
treraient que 7 est orthogonal a tous les polyndmes en les coefficients c;; de
la représentation E. Comme ces polyndmes sont denses dans I’espace des
fonctions continues sur K, on aurait y = 0, ce qui est absurde.

[I1 n’est probablement pas nécessaire d’utiliser les relations d’ortho-
gonalité. Peu importe.]

Remarque. L’ analogue du lemme 2 dans le cas complexe est vrai, a
condition de remplacer ® E par ® (E® E) La démonstration est essen-
tiellement la méme. [Dans le cas réel, I’existence d’une forme quadratique non
dégénérée invariante montre que E est isomorphe a E; c’est pour cela que
I’on a pu se débarrasser de l\é’.]

COROLLAIRE. Lorsque E est fidele, I’enveloppe de K s’identifie au
groupe Gg.

Cela ne fait que reformuler la proposition.

PROPOSITION 4. Pour que G soit algébrique, il faut et il suffit que K
soit un groupe de Lie.

Si K est un groupe de Lie, le théoréme de Peter-Weyl montre qu’il admet
une représentation fidéle E; on a alors G = Gg d’apres le corollaire ci-dessus,
et G est donc algébrique. Inversement, si G est algébrique, il est clair que
K = G(R) est un groupe de Lie.

DEFINITION 1. Unr groupe algébrique linéaire réel H est dit anisotrope
s’il vérifie les deux conditions suivantes:

a) H(R) est compact.

b) H(R) est dense pour la topologie de Zariski de H.

(Comme H(R) contient un voisinage de 1 dans H, la condition b) équivaut a
la suivante:

b’) Toute composante connexe (au sens algébrique) de H contient un
point réel.

En particulier, b) est vérifiée si H est connexe.)

Exemples

1) Un groupe semi-simple connexe est anisotrope si et seulement si la
forme de Killing de son algébre de Lie est négative.
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2) Un groupe de type multiplicatif (non nécessairement connexe) est
anisotrope si et seulement si tout homomorphisme de ce groupe dans le groupe
multiplicatif G,, est trivial ou d’ordre 2. (La conjugaison complexe opere
donc par y — y ~! sur le groupe dual.)

PROPOSITION 5. Soit H un groupe algébrique linéaire réel, et soit K
un sous-groupe compact de H(R) dense pour la topologie de Zariski. Alors
H est anisotrope, on a K = HR) et H s’identifie a I’enveloppe de K.

Le fait que H soit I’enveloppe de K résulte du corollaire & la prop. 3.
On en déduit que K = H(R), donc que H est anisotrope.

COROLLAIRE. Soit H’ un groupe algébrique linéaire réel, et soit ¢ un
homomorphisme continu de K dans H'(R). Il existe alors un morphisme
f:H— H' et un seul qui prolonge ¢.

Cela ne fait que traduire le fait que H est ’enveloppe de K.

Remarque. 11 est essentiel de supposer que H' est linéaire (prendre
pour K un cercle, et pour H’ une courbe elliptique!).

PROPOSITION 6. Le foncteur «enveloppe» est une équivalence de la
catégorie des groupes de Lie compacts sur celle des groupes algébriques
linéaires réels anisotropes.

C’est clair.

Remarques

1) Le foncteur «enveloppe» jouit des propriétés explicitées au n° 4.3.
En particulier, les éléments de G(R) = K peuvent €tre interprétés comme les
automorphismes du foncteur «espace vectoriel sous-jacent» commutant au
produit tensoriel et triviaux pour le module trivial R. [Ce n’est pas tout a fait
le théoreme de dualité de Tannaka, car ce dernier est relatif a des représen-
tations complexes unitaires, et a des automorphismes unitaires. 11 devrait y
avoir moyen de passer de ’un a Iautre. Au concours!]

2) Si K est un groupe de Lie compact, il n’y a pas lieu de distinguer entre
son enveloppe en tant que groupe topologique, ou en tant que groupe de Lie
réel, puisque toute représentation linéaire continue d’un groupe de Lie réel est

analytique. En particulier, les éléments de la bigébre de K sont des fonctions
analytiques sur K.
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5.3. L’ENVELOPPE COMPLEXE D’UN GROUPE COMPACT

Soit K un groupe compact. Soit L¢ la catégorie des représentations
linéaires complexes continues de rang fini de K. Cette catégorie est saturée (le
corps de base étant maintenant C). Nous noterons G,¢c et C,c le schéma en
groupes et la bigebre correspondants, et nous dirons que G, ¢ est [’enveloppe
complexe de K. D’apres le n°® 4.3, une fonction complexe f sur K appartient
a C,c si et seulement si elle vérifie les conditions suivantes:

a’) Les translatées de f engendrent un espace vectoriel de rang fini.
b’) f est continue.

En comparant avec les conditions a) et b) du n® 5.2, on voit que cela signifie
que la partie réelle et la partie imaginaire de f appartiennent a la bigebre C
de G. On a donc

C/ic=CQ®rC

et le groupe G,c est le schéma en groupes déduit de G par extension des
scalaires de R a C. En particulier, le groupe G,c(C) de ses points
complexes peut étre identifié a G(C).

Noter que la conjugaison complexe définit une involution g — g de G(C),
dont I’ensemble des invariants est G(R) = K. Plus précisément:

THEOREME 2. Supposons que K soit un groupe de Lie compact, et
soit t son algébre de Lie. Alors g g est une involution de Cartan forte
(cf. réd. n° 517) du groupe de Lie G(C). Les facteurs de la décomposition
de Cartan correspondante sont K et P = exp(if), de sorte que
G(C) =K.P.

Démonstration

a) On va d’abord vérifier le th. 2 dans le cas particulier du groupe
orthogonal G, = 0,. On a G;(R) = 0,(R), G,(C) = 0,(C), et ’on sait que
gt g est une décomposition de Cartan forte de O,(C) dont I’ensemble des
invariants est K; = 0,(R). Cette décomposition montre en méme temps que
K, est dense dans O, (C) pour la topologie de Zariski, donc que O, est ’enve-
loppe de K.

b) Passons au cas général. On choisit un plongement de K dans un groupe
orthogonal K; = 0,(R); I’enveloppe G de K s’identifie alors & un sous-
groupe algébrique de O,, a savoir ’adhérence de K (pour la topologie de
Zariski). Le groupe G(C) est donc un sous-groupe de G;(C), stable par
P’involution de Cartan considérée. Comme c’est un sous-groupe «de type
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algébrique, il en résulte (cf. réd. 517, p. 48, prop. 3) que la restriction de
g+ F A ce sous-groupe est bien une décomposition de Cartan forte. On
sait déja que le sous-groupe de ses invariants est K. D’autre part, ’algébre de
Lie de G(C) est C ® f, et automorphisme de C & { induit par gt g est la
conjugaison complexe; on en déduit que le facteur P correspondant est bien
exp (if), c.q.f.d.

Remarques

1) Lorsque K est un groupe compact quelconque, on peut I’écrire comme
limite projective de groupes de Lie compacts K, et 'on a G(C) = lgn G.(O),
avec des notations évidentes. D’aprés le th. 2, chaque G,(C) a une décompo-
sition de Cartan K,.P,, avec P, = exp(if,). Finalement, on obtient une
décomposition de G(C) sous la forme G(C) = K .exp(if), en notant f la limite
projective des f,.

[Cette décomposition ne semble présenter aucun intérét en dehors du cas
ou K est un groupe de Lie. Noter que G(C) n’est méme pas localement
compact, si dim(K) = oo.}

2) A la place du groupe O,(R), on aurait pu utiliser le groupe unitaire
U,(C), plus traditionnel. Toutefois, il aurait fallu expliquer comment on
considére U, comme un groupe algébrique sur R, et pourquoi U, ¢ s’identifie
a GL,/c- _

THEOREME 3. Les hypothéses étant celles du th. 2, soit X un groupe
de Lie complexe, et soit f un homomorphisme continu de K dans X.
Il existe alors un homomorphisme F:G(C)—> X de groupes de Lie
complexes, et un seul, qui prolonge f.

Soit K¢ le groupe de Lie complexifié de K, au sens de la rédaction 515,
§6, n° 10 [il faut modifier la rédaction en question, car elle suppose, bien
inutilement, que le groupe de Lie réel dont on part est connexe]. On a un
homomorphisme canonique n: K- = G(C), et le th. 3 équivaut a dire que =«
est un isomorphisme.

Il est clair en tout cas que = est surjectif; d’autre part, on sait (loc. cit.)
que ’algebre de Lie de K¢ est engendrée sur C par f; puisque celle de G(C)
est f @ C, on en conclut que © est un revétement. Ce revétement admet une
section canonique G(C) = K.P — K¢ définie par x.exp(it) — x'.exp(it’)
ou x désigne un élément de K, x’ son image par K — K, ¢ désigne un élément
de if et ¢" son image par ’application tangente & K - K.. L’image de cette
section est K'.P’, avec des notations évidentes; c’est une réunion de

composantes connexes de Kc. De plus, c’est un sous-groupe en vertu du
lemme suivant:
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LEMME 3. Soit A un groupe topologique, soit B un sous-groupe
de A, et soit C la réunion des composantes connexes de A qui
rencontrent B. Alors C est un sous-groupe de A.

Si x, y € C, il existe des parties connexes X, Y de A qui rencontrent B et
sont telles que x € X,y € Y. Alors X.Y ! est une partie connexe de A
rencontrant B et contenant xy~!; on a donc xy~! € C, ce qui prouve bien
que C est un sous-groupe.

Le théoreme 3 est maintenant évident. En effet, on vient de voir que K’ . P’
est un sous-groupe ouvert de K¢; comme il contient K’, il est nécessairement
égal a K¢ et la projection 7 est bien un isomorphisme.

Exemple. Prenons pour K le cercle S;, de sorte que G(C) = C*. Soit H
un groupe de Lie complexe compact connexe de dimension 1 [d’aucuns
appellent ¢ca une courbe elliptique]; en tant que groupe de Lie réel, H est un
tore de dimension 2. Choisissons un plongement f de S; dans H. D’apres le
th. 3, f se prolonge en un homomorphisme F:C* - H. Il est immédiat
que F est un revétement, et que son noyau est formé des puissances d’un
élément g € C*, avec |g|< 1; on peut donc identifier H & C*/gZ [Tate
devrait étre content].

Si K est un groupe de Lie compact, il est clair que son enveloppe G est
un groupe réductif (puisque toutes ses représentations linéaires sont semi-
simples), donc G,¢ est un groupe réductif complexe. Inversement:

THEOREME 4. Soit H un groupe algébrique linéaire complexe réductif,
et soit K un sous-groupe compact maximal de H(C). L’enveloppe
complexe de K s’identifie a H.

Soit § ’algébre de Lie de H, et soit f celle de K. On va d’abord prouver
que ) = f @ if, et qu’il existe une décomposition de Cartan de H(C) dont les
facteurs sont K et exp(if).

Il suffit de le faire lorsque H est connexe, puis (quitte a passer a un
revétement) lorsque H est, soit un tore, soit un groupe semi-simple. Le premier
cas est trivial. Le second a été traité dans la rédaction 517, §3 (en se ramenant
au cas adjoint et en utilisant I’existence d’une forme réelle de §) dont la forme
de Killing est négative).

Ceci étant, si G est I’enveloppe complexe de K, il est clair que le morphisme
canonique G — H donne lieu a un homomorphisme G(C) = H(C) qui est un
isomorphisme. C’est donc un isomorphisme.
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Remarque. Le th. 4 équivaut & dire que ’enveloppe de K est une « forme
réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H(C),
— formes réelles anisotropes de H.

En particulier, ces derniéres sont conjuguées entre elles par les éléments
de H(C) (et méme par ceux de H°(C), H° désignant la composante neutre
de H).

5.4. RETOUR AUX GROUPES ANISOTROPES

PROPOSITION 7. Soit G un groupe algébrique linéaire réel anisotrope,
et soit H un sous-groupe algébrique de G. Soit V = G/H [’espace
homogéne correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L’application canonique G(R) — V(R) est surjective (de sorte qu’on
peut identifier V(R) a G(R)/H(R)).

¢) Si H estdistingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g g du th. 2 laisse évidemment stable
le sous-groupe H(C) de G(C). Comme H(C) est «de type algébrique», on en
conclut que H(C) admet lui-méme une décomposition de Cartan K.P, ou
K = H(C) n G(R) = H(R). Mais alors il est clair que adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est
anisotrope, d’ou a).

Soit maintenant v € V(R); soit g € G(C) un élément dont I’image dans
V(C) = G(C)/H(C) est v. On a g = g mod H(C). Soit K;.P; la décompo-
sition de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g = kip:, avec k; € K, p; € P;. L’hypothése g = g mod H(C) signifie qu’il
existe k € K et p € P tels que g = gkp, i.e. kip; = klpl_lkp, d’ou pf = kp,
ce qui entraine Kk =1, p = pf . Comme P est stable par extraction de racines
carrées, on a p; € P. On en conclut que g = k; mod H(C), donc que v est
I’image de I’élément k; € G(R), ce qui prouve b).

Enfin, si H est distingué, il est clair que I’image de K, dans (G/H) (R) est
dense pour la topologie de Zariski de G/H; or cette image est un compact,
d’ou etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sfir, dans le cas ou H est
connexe, qui est trivial.]
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5.5. GROUPES DE LIE COMPLEXES REDUCTIFS

THEOREME 5. Soient H wun groupe de Lie complexe, H° sa compo-
sante neutre et Y) son algebre de Lie. Les conditions suivantes sont
équivalentes:

(1) H/H° est fini; V) est réductive; la composante neutre du centre
de H° est isomorphe a un produit de groupes C*.

(i) H/H° est fini; toute représentation linéaire complexe de H est
semi-simple; il existe une telle représentation qui est fidéle.

(iii) H/H° est fini; si K est un sous-groupe compact maximal de H,
et t son algébre de Lie, on a §h =1t @ if.

(iv) 1l existe un groupe de Lie compact K tel que H soit isomorphe
au complexifié de K.

(v) 1l existe un groupe algébrique linéaire sur C qui est réductif, et dont
le groupe des points est isomorphe @ H (comme groupe de Lie complexe).

Démonstration. L1’équivalence (iv) € (v) résulte des ths. 3 et 4. Le
fait que (iv) = (iii) résulte de la décomposition de Cartan de H. Inversement,
supposons (ii1) vérifiée, soit G ’enveloppe de K, et soit G(C) le complexifié
de K. L’injection K — H se prolonge en un morphisme f:G(C)— H de
groupes de Lie complexes. Vu que §) = f @ if, f est un isomorphisme local.
De plus, K est un sous-groupe compact maximal a la fois de G(C) et de H
et la restriction de f a K est ’identité (modulo les identifications faites). Cela
entralne que f est un isomorphisme, en vertu du lemme suivant:

LEMME 4. Soit f:A — B un homomorphisme de groupes de Lie réels.
On suppose:.

a) que [ est un isomorphisme local;

b) que A et B ont un nombre fini de composantes connexes;

c) qu’il existe un sous-groupe compact maximal K, (resp. Kz) de A
(resp. de B) tel que la restriction de f a K, soit un isomorphisme de
K, sur Kjp.

Alors f est un isomorphisme.
Démonstration du lemme 4. On sait que B possede une décomposition
multiexponentielle B = Kg.exp(p;)...exp(p,), ou les p; sont des sous-

espaces vectoriels de I’algebre de Lie b de B. Cela permet de définir une section
h:B— A par

k.exp(t;)...exp(f,)— k' .exp(¢])...exp(¢,)
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ot k' désigne 'image réciproque de k dans K, et ¢, ..., ¢, les éléments de
’algébre de Lie de A relevant ¢, ..., ,. L’image de h est une réunion de
composantes connexes de A; comme elle contient Ky, c’est A tout entier;
d’ou le lemme.

On a donc prouvé ’équivalence (iii) ¢ (iv).

L’implication (v) = (i) est immédiate: on sait en effet que tout groupe
réductif connexe est extension d’un groupe semi-simple par un groupe de type
multiplicatif. Inversement, montrons que (i) = (iil) (ce qui prouvera que 1)
est équivalent a (iii), (iv), (v)). On peut supposer H connexe. Si Z désigne la
composante neutre du centre de H, et S son groupe dérive, S N Z est un groupe
discret, qui est le centre de S. Or on a:

LEMME 5. Le centre d’un groupe de Lie complexe, connexe, d’algébre de
Lie semi-simple, est fini.

Il suffit de voir que le groupe fondamental du groupe adjoint est fini. Or
le groupe adjoint admet une décomposition de Cartan K. P, avec K compact
semi-simple connexe (cf. rédaction numéro 517); son groupe fondamental est
le méme que celui de K, et ce dernier est fini d’apres un théoréme bien connu
d’Int. (chap. VII, §3, prop. 5).

Ceci étant, on voit que S N Z est fini, donc que H admet pour revétement
fini le produit S X Z. Pour vérifier que H jouit de la propriété (iii), il suffit
de le faire pour son revétement S X Z, c’est-a-dire pour S et pour Z. Le cas
de Z est trivial (puisqu’on I’a supposé isomorphe a (C*)”); pour S, on
remarque que, d’apres le lemme 5, son centre est fini, et ’on est ramené au
cas du groupe adjoint; mais ce dernier est évidemment «algébrique»,
i.e. vérifie (v), donc aussi (iii).

Reste a démontrer que (ii) est équivalente aux quatre autres propriétés. Tout
d’abord, on a (iv) = (ii); en effet, si H est le complexifié de K, et si E est une
représentation linéaire complexe de H, les sous-espaces de E stables par K le
sont aussi par H, ce qui montre que E est semi-simple; de méme, le fait que
K ait une représentation linéaire fidéle montre que H en posséde une.

Enfin, supposons (ii) vérifiée. L’existence d’une représentation semi-simple
et fidele de H montre que § est réductive (car la représentation de § correspon-
dante est aussi semi-simple et fidele). D’autre part, H° vérifie aussi (ii) (le
seul point non évident est que toute représentation linéaire p de H° soit semi-
simple; cela se voit en remarquant que la représentation linéaire induite (au
sens Frobenius!) de p est semi-simple). Si Z désigne la composante neutre
du centre de H et S le groupe dérivé de H, on voit comme ci-dessus que SN Z
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est un groupe fini F. On a un homomorphisme surjectif H — Z/F; le groupe
Z/F est donc un groupe commutatif, connexe, dont toutes les représentations
linéaires sont semi-simples; de plus, Z posséde une représentation linéaire
fidele. Il en résulte facilement (cf. exercice 5) que Z est isomorphe a (C*)”.
On a donc (ii)) = (i), ce qui achéve la démonstration.

[Cette démonstration n’est en fait qu’une simple vérification: tout le travail
sérieux a déja été fait. On devrait pouvoir la présenter plus simplement.]

DEFINITION 2. Un groupe de Lie complexe qui vérifie les propriétés équi-
valentes du th. 5 est dit réductif.

THEOREME 6. Soit H un groupe de Lie complexe réductif. Soit G
son enveloppe complexe (en tant que groupe de Lie complexe, cf. n° 4.3).
Alors G est un groupe algébrique linéaire complexe réductif (au sens
algébrique) et l’application canonique H — G(C) est un isomorphisme.

Soit K un sous-groupe compact maximal de H; puisque H est le complexifié
de K, les représentations linéaires complexes (holomorphes) de H corres-
pondent bijectivement (par restriction) a celles de K. Il s’ensuit que le
groupe G en question n’est autre que /’enveloppe complexe Gk,c de K, d’ou
le théoreme.

COROLLAIRE 1. Soient G, et G, deux groupes algébriques linéaires
complexes, et soit f:G(C)— G,(C) un homomorphisme de groupes de
Lie complexes. Si G, est réductif, [ est «algébrique» (i.e. induit par un
morphisme G; = G,).

Cela ne fait que traduire le th. 6.

COROLLAIRE 2. Le foncteur «enveloppe» est une équivalence de la
catégorie des groupes de Lie complexes réductifs sur celle des groupes
algébriques linéaires réductifs.

C’est clair.

Remarque. Soit K un sous-groupe compact maximal de G(C), ou G est
algébrique linéaire réductif sur C. On peut résumer ce qui précede ainsi:
I’algébre affine de G s’identifie a I’algebre des fonctions holomorphes sur G (C)
dont les translatées engendrent un espace vectoriel de dimension finie; par
restriction a K, cette algébre s’applique isomorphiquement sur 1’algébre des
fonctions continues complexes sur K dont les translatées engendrent un espace
vectoriel de dimension finie.
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[On obtient ainsi des bigébres sur C; a ces bigebres correspondent des
schémas en groupes; a ces schémas en groupes correspondent des groupes de
Lie complexes; & ces groupes... Voyez, voyez, la machine tourner!]

EXERCICES

§1

1) Soit E un K-module projectif de type fini. On identifie End(E) a
E ® E’; on note I I’élément de E ® E’ correspondant & 1g, et 7 son image
dans £’ ® E.

On munit £ ® E’ = End(E) de la structure de cogébre opposée a celle
définie au n° 1.1.

a) Six=a®a € EQE’', montrer que d(x) =a® IR a’.

b) On définit une application dg: E—=> End(E) Q E = EX E'® E par
a— a @ ‘I. Montrer que cette application définit sur £ une structure de
comodule a gauche sur End(E).

¢) On identifie End(F) ® End(E) a End(E® E) par [Papplica-
tion (u,v)~ u ® v. D’autre part, si on écrit End(£ Q E) sous la forme
EQREXE QE’" la permutation des deux facteurs E’ définit un auto-
morphisme ¢ de End(E & E). Montrer que ’on a

du) =cw®1g) si ueEndE).

d) Soit (v;) une base de E, et soit (E;; = v ; ® ;) la base correspondante
de End(E). Montrer que

dEj) = LE«QEy; .
k
e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogébre plate, et soit £ un comodule sur C.

a) Soit ¥V un K-module tel que E soit isomorphe (comme module) & un
quotient de E. Montrer qu’il existe un sous-comodule F de C ® V tel que E
soit isomorphe (comme comodule) & un quotient de F. (Utiliser le morphisme
C® V— CQ Eetlefait que E est isomorphe a un sous-comodule de C X E.)

Montrer que, si K est noethérien, et E de type fini, on peut choisir F de type
fini.
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b) On suppose que K est un anneau de Dedekind. Montrer que tout
comodule E de type fini est quotient d’un comodule F qui est projectif de type
fini. (Utiliser a) en prenant pour J un module libre de sorte que F soit sans
torsion.)

§2

1) Soit xe C tel que de(x) =x® x et e(x) =1. On note K, le
module K muni de la structure de comodule définie par

yrexy.
Prouver I’équivalence des propriétés suivantes:
a) K, est le seul objet simple de Com’; (a isomorphisme pres).
b) Toute sous-cogébre de C non réduite & 0 contient x.

¢) Le comodule C est extension essentielle du sous-comodule Kx (i.e. tout
sous-comodule de C différent de O contient Xx).

d) L’algebre profinie A duale de C est un anneau local d’idéal maximal
le noyau de I’homomorphisme a— <x,a> de A dans K.

[Noter que c) signifie ceci: le comodule C est /’enveloppe injective du
comodule simple Kx.]

§3

1) Avec les notations du n° 3.4, montrer sans utiliser la prop. 4
que la formule (iii) est conséquence des formules (i) et (ii).

2) Les notations étant celles du n°® 3.4, on suppose K parfait. Soit g
un automorphisme du foncteur v. Pour tout objet E de Com%, soit sg
(resp. ug) la composante semi-simple (resp. unipotente) de g(£). Montrer que
E— sp et E— ur sont des automorphismes du foncteur v. Si g vérifie
les relations (i) et (ii), montrer qu’il en est de m€me pour s et u. Déduire de
14 la décomposition des éléments de G(K) en produits d’éléments semi-simples
et unipotents commutant entre eux (dans le cas ou G est un schéma en
groupes).
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Utiliser le méme procédé pour obtenir la décomposition des éléments de
’algébre de Lie de G en sommes d’éléments semi-simples et nilpotents
commutant entre eux.

[Cette décomposition n’a en fait rien a voir avec les bigeébres. On aurait
pu la donner au §2.]

3) On suppose que G = Spec(C) est un schéma en groupes. Prouver
I’équivalence des propriétés suivantes:

a) Tout G-module simple est isomorphe au G-module trival K.
b) G est limite projective de groupes algébriques linéaires unipotents.

¢) Si Ee€ Comé, K, € Algg, et u € Gg(K,), I’élément u est unipotent.

4) On suppose K de caractéristique zéro. Montrer que la catégorie des
G-modules semi-simples vérifie les conditions du corollaire & la prop. 3,
donc correspond a un quotient H de G. Montrer que I’on peut caractériser H
comme le plus grand quotient de G qui soit réductif (i.e. limite projective de
groupes algébriques linéaires réductifs, au sens usuel).

§4

1) On prend K = C. Le groupe additif I' = C est considéré comme
un groupe de Lie complexe. Soit G son enveloppe, et soit C la bigebre
correspondante.

a) Montrer qu’une fonction f(z) sur I appartient a C si et seulement si
c’est une exponentielle-polynéme, i.e. si elle est combinaison linéaire de
fonctions de la forme z"7e*?, avec n € N, A € C.

b) Montrer que C est produit tensoriel de la bigébre formée des polyndmes,
et de la bigebre formée des combinaisons linéaires d’exponentielles. Interpréter
cette décomposition comme une décomposition de I’enveloppe G en produit
du groupe additif G, et d’un groupe de type multiplicatif M dual du groupe
abélien C. En particulier, G n’est pas algébrique.

2) Comment faut-il modifier ’exercice précédent lorsque K = R et

I' = R? (La partie «tore» de G n’est plus déployée; son dual est C, muni de
la conjugaison complexe.)

(Dans les deux exercices ci-aprés, on se permet d’identifier un groupe
profini I" 4 son enveloppe relativement a la catégorie des I'-modules & noyau
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ouvert. Cela revient a identifier un groupe fini au groupe algébrique
«constant» de dimension 0 qui lui est associé.)

3) Soit K = Q,, et soit H un groupe algébrique semi-simple simplement
connexe sur K. Soit I' un sous-groupe ouvert compact du groupe H(Q,).
Montrer que ’enveloppe du groupe topologique I' est H X I'. (Le second
facteur est identifié au schéma en groupes correspondant, cf. ci-dessus.)

4) Soient K = Q et I" = SL,(Z), n > 3. On prend pour L la catégorie de
toutes les représentations linéaires de I' sur Q de rang fini. Montrer que
’enveloppe de T est SL, X [] SL,(Z,), le second facteur étant identifié¢ & un

p
schéma en groupes comme on I’a expliqué ci-dessus. (Utiliser le th. 16.2,
p. 497, des Publ. IHES, 1967, combiné avec le fait que tout sous-groupe
d’indice fini de I' contient un «groupe de congruence».)

5) Soit K un corps complet pour une valuation discréte v. On note A
(resp. m) I’anneau (resp. I’idéal maximal) de v, et ’on note p la caractéristique
du corps A/m. On suppose p # 0 et car(K) = 0.

a) Soit x € K*. Supposons qu’il existe un entier d tel que, pour tout n > 0,
il existe une extension K, de K de degré d et un élément y € K,, tel que
yP" = x. Montrer que v(x) = 0. Montrer que, si x =1 (mod m), on a x = 1.
(Se ramener au cas ou toutes les racines p”-emes de x appartiennent au
corps K.)

b) Soit f: K = GL,(K) un homomorphisme K-analytique. Montrer que f
est «algébrique», i.e. qu’il existe une matrice nilpotente u telle que
f(t) = exp(tu) pour tout ¢t € K. (Appliquer a) aux valeurs propres de f(¢),
avec d = n; en conclure que f(¢) est unipotent pour tout ¢.)

¢) Déduire de b) que I’enveloppe du groupe de Lie K est le groupe additif
G, (relativement a K).

d) Etendre b) et ¢) aux groupes algébriques unipotents sur K (écrire les
éléments de ces groupes comme produits de groupes a un parametre). Méme
chose pour les groupes semi-simples déployés. [Il est probable que le résultat
reste vrai pour les groupes semi-simples n’ayant aucun facteur simple
anisotrope.]

e) Montrer que les résultats de b) et ¢) ne s’étendent pas aux groupes de
type multiplicatif.

6) Soit K un corps localement compact ultramétrique de caracté-
ristique O et soit p le groupe des racines de I’unité contenues dans K. Soit S
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le revétement de SL,(X) défini par C. Moore et T. Kubota; on a une suite

exacte
{1} > p— S SLy(X) ~ {1}

et S est son propre groupe dérivé. Montrer que toute représentation K-linéaire
analytique du groupe de Lie S est triviale sur p; en déduire que SL, est
’enveloppe de S. (Si G est ’enveloppe de S, remarquer que la suite

est exacte (cf. exercice 5). Utiliser ensuite le fait que SL, est simplement
connexe.)

§5

1) Etendre la prop. 1 au cas d’un groupe compact K opérant continiiment
sur un espace vectoriel réel ¥V de dimension finie, chacune des opérations
de K étant polynomiale. (On montrera d’abord, au moyen du théoréme de
Baire, que le degré de ces opérations est borné.)

2) Soit H un sous-groupe algébrique réel de GL,. Montrer que H est
anisotrope si et seulement si il existe une forme quadratique positive non
dégénérée sur R” qui est invariante par H.

3) a) Soit G un groupe algébrique linéaire réel, et soit H un sous-groupe
algébrique distingué de G. On suppose que H et G/H sont anisotropes, et que
G/H est connexe. Montrer que G est anisotrope.

a b
b) On prend pour G le groupe des matrices de la forme ( b ) avec
-b a

(@>+b*)>=1 et pour H le sous-groupe de celles pour lesquelles
a*+ b*=1. Le groupe G/H s’identifie au groupe «constant» { =+ 1}.
Montrer que H et G/H sont anisotropes et que G ne I’est pas.

4) Avec les notations de la prop. 7, montrer que I’injection de V(R)
dans V(C) est une «équivalence d’homotopie». (Il suffit de voir que
T (V(R)) = 7;(V(C)) est un isomorphisme pour tout i; utiliser le lemme des
cing pour se ramener a ’énoncé analogue pour G et H.) [Exercice: donner
explicitement une «rétraction de déformation» de V(C) sur V(R).]

En particulier, la quadrique complexe d’équation ¥ zf = 1 a méme type

d’homotopie que ’ensemble de ses points réels: énoncer des résultats analogues
pour les variétés de Stiefel, etc.
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5) (Cet exercice pourrait remonter au chapitre III du livre de Lie.)

Soit A un groupe de Lie complexe, commutatif, connexe, d’algébre de
Lie a; soit A le noyau de exp:a — A, de sorte que A s’identifie a a/A.

a) Démontrer I’équivalence de: |
a;) L’application canonique C ® A — a est injective.
a,) A est isomorphe a un sous-groupe de Lie d’un (C*)".
az) A est isomorphe a un groupe (C*)? x C¢9.
a,) A posséde une représentation linéaire complexe fidele.
as) A posseéde une représentation linéaire complexe fidele semi-simple

d’image fermée.

b) Démontrer 1I’équivalence de:
b,) L’application C Q A — a est surjective.
b,) A est isomorphe a un quotient d’un groupe (C*)”.
bs3) Aucun facteur direct de A n’est isomorphe a C.

bs) Toute représentation linéaire complexe de A est semi-simple.
¢) Démontrer 1’équivalence de:
¢;) L’application C ® A — a est bijective.

c;) A est isomorphe a un (C*)”.

d) Soit F un sous-groupe fini de A, et soit A" = A/F. Montrer que A
vérifie les conditions a;) (resp. b;), ¢;)) si et seulement si A" les vérifie.
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