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L'Enseignement Mathématique, t. 39 (1993), p. 33-85

GÈBRES

par Jean-Pierre Serre

Le texte ci-après reproduit la rédaction Bourbaki n° 518, datant de

septembre 1968.

Son objet est exposé dans les «commentaires du rédacteur», placés au

début. Il s'agit essentiellement des enveloppes algébriques des groupes

linéaires, et de leurs relations avec les différents types de gèbres: algèbres,

cogèbres et bigèbres. De telles enveloppes se rencontrent dans les situations

suivantes :

— complexification d'un groupe de Lie réel, par exemple compact;

— représentations galoisiennes p-adiques (cas local), ou /-adiques (cas

motivique);

— représentations linéaires de certains groupes discrets, tels que SL„(Z),
n ^ 3.

Une étude vraiment générale de ce genre de question nécessite la notion de

catégorie tannakienne, comme l'ont montré Grothendieck et Saavedra Rivano

(Lect. Notes 265, Springer-Verlag, 1972). Toutefois le cas considéré ici est

nettement plus simple que le cas tannakien général, du fait que l'on dispose
à l'avance d'un «foncteur fibre». C'est ce qui justifie (peut-être) la présente

publication.

Le texte initial a été laissé inchangé, à part une correction au n° 5.2

que je dois à P. Deligne. Il y a quelques références à des rédactions non
publiées de Bourbaki (nos 515 et 517), mais elles sont peu nombreuses
et ne devraient pas gêner le lecteur (elles ne concernent que des propriétés
standard des involutions de Cartan).

Cette publication a été autorisée par N. Bourbaki; je l'en remercie
vivement.
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Commentaires du rédacteur

Soit T un groupe. Se donner une structure de schéma en groupes affine sur

T (ou, plus correctement, définir une «enveloppe» algébrique de T) revient à

se donner:

— soit une bigèbre C de fonctions sur r, de sorte que le schéma en groupes

en question soit Spec (C);

— soit une sous-catégorie de la catégorie des représentations linéaires de T

(cette sous-catégorie étant stable par sous-trucs, quotients, sommes

directes, produits tensoriels,

Ainsi, la structure algébrique réelle (resp. complexe) d'un groupe de Lie

compact (resp. réductif complexe) correspond à la catégorie des représentations

analytiques réelles (resp. complexes) du groupe; sa bigèbre est formée
des «coefficients de représentations» qui sont analytiques réels (resp.

complexes).
Le but de la rédaction est d'expliquer cette correspondance entre bigèbres

et catégories de représentations. Il y a intérêt à traiter d'abord le cas, plus

simple, des cogèbres (cela revient à laisser tomber le produit tensoriel des

représentations). C'est ce qui est fait dans les §§1 et 2. Les §§3 et 4 sont
consacrés aux bigèbres, et le §5 aux applications aux groupes compacts et

complexes.

Avertissements

1. Il s'agit, non d'un projet de chapitre, mais d'une rédaction à usage
interne, pour l'édification de Bourbaki (ou, en tout cas, du rédacteur). On

y utilise librement les notions élémentaires sur les catégories abéliennes et les

schémas affines. Certains morceaux devraient quand même être utilisables
dans le livre de Lie.

2. Le rédacteur a fait beaucoup d'efforts pour distinguer sa droite de sa

gauche. Il n'est pas certain d'y être toujours parvenu.

Notations

Dans les §§ 1 à 4, la lettre K désigne un anneau commutatif. A partir du
§2, on suppose (sauf mention expresse du contraire) que c'est un corps.

Toutes les algèbres, cogèbres, bigèbres, tous les comodules, modules, etc.
sont sur K. Même chose pour les produits tensoriels. On écrit Hom(K, W) et
V(g) W au lieu de Hom*(F, W) et V®KW. Le dual d'un module V est
noté V'.
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On note A\gK la catégorie des anneaux commutatifs K\ munis d'un
morphisme K-* K\.

L'application identique d'un ensemble X est notée lx (ou simplement 1 si

aucune confusion sur X n'est à craindre).

§ 1. COGÈBRES ET COMODULES (GÉNÉRALITÉS)

1.1. COGÈBRES

Dans tout ce paragraphe, C désigne une cogèbre, de coproduit d, possédant
une co-unité (à droite et à gauche) e. Rappelons (cf. A lg. III) ce que cela

signifie:

C est un module (sur K);
d est une application linéaire de C dans C ® C;

e est une forme linéaire sur C.

De plus, ces données vérifient les axiomes suivants:

(Ci) (Coassociativité) Les applications linéaires (1 c®d)od et

(id (g) lc) ° d de C dans C (g) C (g) C coïncident.

(C2) (Co-unité) (lcg)e)od lc et (e (g lc) ° d lc.

Exemples

(1) Soit C une cogèbre de co-unité e. En composant le coproduit de C avec

la symétrie canonique de C (x) C, on obtient une seconde structure de cogèbre

sur C, dite opposée de la première. On la note C°; la co-unité de C° est e.

(2) Toute somme directe de cogèbres a une structure naturelle de cogèbre.
En particulier, 0 est une cogèbre.

(3) Supposons que C soit projectif de type fini (comme if-module), et

soit A son dual. Comme le dual de C (x) C s'identifie à A (x) A, toute structure
de cogèbre sur C correspond à une structure d'algèbre associative sur A, et

réciproquement. Pour que e e A soit co-unité de C, il faut et il suffit que ce

soit un élément unité (à gauche et à droite) pour A.
(Lorsque K est un corps, on verra plus loin que toute cogèbre est limite

inductive de cogèbres obtenues par ce procédé.)

(4) Soit V un module projectif de type fini. Soit

C End (F) V® V'
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La forme bilinéaire Tr(uu) met C en dualité avec lui-même; appliquant la

méthode de l'exemple précédent, on voit que la structure d'algèbre de définit

par dualité une structure de cogèbre sur C, de co-unité la trace Tr: -* En

particulier Mn(K) a une structure de cogèbre canonique, pour laquelle on a

d{Eu) £ EkJ 0 Eik
k

(La cogèbre opposée est plus sympathique, cf. exercice 1.)

(5) Soient Ci et C2 deux cogèbres, de coproduits dx et d2 et de co-unités

ex et e2. Soit o l'isomorphisme canonique de C2 ® Ci sur Ci (x) C2 ; le

composé

(le, (8) a® 1 c2) ° (di ® d2)

munit Ci (x) C2 d'une structure de cogèbre, dite produit tensoriel de celles de

Ci et C2 ; elle admet pour co-unité ex ® e2.

(6) L'algèbre affine d'un schéma en monoïdes affine sur K a une structure

naturelle de cogèbre, cf. n° 3.1.

1.2. COMODULES

Définition 1. On appelle comodule (à gauche) sur C tout module E
muni d'une application linéaire dE: E -> C ® E vérifiant les axiomes

suivants:

(1) Les applications linéaires (d ® lE) ° dE et (le ® dE) ° dE de E
dans C ® C ® E coïncident.

(2) (e®lE)odE=lE.
L'application dE s'appelle le coproduit de E; on se permet souvent de le

(la) noter d.

Remarques

1) Il y a une notion analogue de comodule à droite ; on laisse au lecteur

le soin de l'expliciter (ou de remplacer la cogèbre C par son opposée C°). [Le
rédacteur s'est aperçu trop tard qu'il était plus commode d'échanger droite et

gauche, i.e. d'appeler «comodules à droite» ceux de la définition 1.]

2) Toute application linéaire dE:E~+C®E définit de manière
évidente une application linéaire dE:E®E'->C. Lorsque E est un
ÄT-module projectif de type fini, l'application dE^> dE est un isomorphisme
de Horn (is, C ® E) sur Horn (is ® is", C). Or E ® E' - End (is) a une
structure naturelle de cogèbre, cf. n° 1.1, Exemple 4). On peut vérifier
(cf. exercice 1) que dE vérifie les axiomes (1) et (2) si et seulement si dlE est
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un morphisme de la cogèbre opposée End (E)0 à End (E) dans la cogèbre C,
compatible avec les co-unités.

3) Supposons que E soit libre de base (Ui)ieI. Une application linéaire
dE: E -+ C (x) E est alors définie par une famille cu, i,j e /, d'éléments de C
telle que dE{vi) £ c/y (g) Vj (pour i fixé, doit être nul pour presque

j si
tout j). Les conditions (1) et (2) de la définition 1 se traduisent alors par les

formules:

(1') d(Cij)£ Cik ® ckj pour ij e I
ksi

(2') e(Cjj) 8ij pour

(Lorsque / est fini, cet exemple peut être considéré comme un cas particulier
du précédent.)
Exemples de comodules

1) Le module C, muni de d, est un comodule (à gauche et à droite).

2) La somme directe d'une famille de comodules a une structure naturelle
de comodule.

3) Si E est un comodule, et V un ^-module quelconque, le couple

(E (x) F, dE (x) 1 y) est un comodule, noté simplement E ® V.

4) Les notations étant celles de l'exemple 5) du n° 1.1, soient E{ un
comodule sur Ci et E2 un comodule sur C2. Soit t l'isomorphisme canonique
de Ei (g) C2 sur C2 (g) Ex ; l'application

(lcj ® T ® 1e2) ° ® dE2)

munit Ei (x) E2 d'une structure de comodule sur Ci 0 C2.

5) Si G est un schéma en monoïdes affine sur K, et C la bigèbre correspondante

(cf. n° 3.1), la notion de comodule sur C coïncide avec celle de

représentation linéaire de G (ou G-module), cf. n° 3.2, ainsi que SGAD,
exposé I.

Définition 2. Soient E{ et E2 deux comodules. On appelle

C-morphisme (ou simplement morphisme) de E{ dans E2 toute
application linéaire /: Ex - E2 telle que

(le ®f)° dEl

Les C-morphismes de E{ dans E2 forment un sous-AT-module de

Hom{Ei,E2y, on le note Hotcic(EuE2).
On note Comc la catégorie des C-comodules (à gauche); l'addition des

C-morphismes munit Comc d'une structure de catégorie additive.
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1.3. Une formule d'adjonction

On conserve les notations précédentes. Soit V un iCmodule; d'après le

n° 1.2, Exemples 1 et 3, on a une structure naturelle de comodule sur C (x) V,

le coproduit correspondant étant d ® \v>

Soit d'autre part E un comodule. Définissons une application linéaire

0 : HomCE, V) -> Hom C(E, C (x) V)
par

0(g) de 0 g) o dE si g g Hom (E, V)

Cela a un sens, car dE est un morphisme de E dans C 0 E, et lc ® g est un
morphisme de C (g) E dans C (x) V.

Proposition 1. L'application 0: Horn (is, V) - Homc(E, C (x) F) est
un isomorphisme.

Soit f:E-+C®V un morphisme. En composant / avec e (x) lv:
C (g) V-> V, on obtient un élément s(/) de Hom(is, V). On a ainsi défini une
application linéaire

s: Hornc(is, C 0 V) Hom(£, V)

et il suffit de prouver que 0 et s sont inverses l'un de l'autre. Tout d'abord,
si g e Hom(E, V), on a:

e(0(g)) (e ® If) ° 0(g) (e (x) iv) o (lc ® g) o dE

(e (g) g) o dE g o (e ® 1E) q dE

g ° Ie g

ce qui montre bien que e o 0 i.
D'autre part, si f eHom C(E,C®F), on a:

6(e(/)) (le 0 s(/)) o dE=(lc 0 ((e 0 1K) o /)) o dE

(le ® e ® If) ° (le ® f) ° dE

(le ® e ® If) ° (d (x) \v) o f
(((le ® e) o d) (g) lv) o /
(le ® If) ° / /

ce qui montre bien que 0 o s 1, cqfd.
[Ce qui précède est un bon exemple d'un principe général: tout calcul relatif
aux cogèbres est trivial et incompréhensible.]
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Exemples

1) Prenons V - E et g 1E; l'élément correspondant de Homc(E,C(g)E)
est le coproduit dE\ E -> C (x) E.

2) Prenons F K. On obtient une bijection 0: E' Homc(E, C). La
bijection réciproque associe à tout morphisme f:E-*C la forme linéaire
e ° /.

1.4. Conséquences d'une hypothèse de platitude

A partir de maintenant, on suppose que C est plat (comme AT-module). Si

F est un sous-module d'un module W, on identifie C (g) F au sous-module

correspondant de C (g) FF, et C (x) (IF/ F) à (C (x) fF)/(C (g) F).

Définition 3. SojY E un C-comodule, et soit V un sous-module
de E. On dit que V est stable par C (ou que c'est un sous-comodule
de E) si dE applique V dans C (x) F.

Si tel est le cas, on vérifie tout de suite que l'application dv'. F C (x) F
induite par dE fait de F un comodule (d'où la terminologie); on définit de

même le comodule quotient E/V.

Exemples

1) Soit (F,-)/ eI une famille de sous-modules du comodule E. Si les F,

sont stables par C, il en est de même de £ Vt (resp. de n V lorsque / est
i e I i e I

fini). Cela résulte des formules:

C0(£ V,) S (C® K,)
el c ® (O F,) n (C ® K,) / fini

cf. Alg. Comm., chap. I, §2.

2) Si E est un comodule, le morphisme dE:E -> C ® E identifie E à un

sous-comodule de C (x) E (muni du coproduit d (x) \E, cf. n° 1.3). On notera

que ce sous-comodule est même facteur direct dans C (g) E comme ^-module
(mais pas en général comme comodule), en vertu de la formule (2) de la

définition 1.

Proposition 2. Soit f:Ei~+E2 un morphisme de comodules. Alors
Ker(/) et Im (/) sont stables par C; déplus, f définit par passage

au quotient un isomorphisme du comodule £i/Ker(/) sur le comodule

Im (/).
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Puisque C est plat, C (g) Ker(/) est le noyau de lc ® f et C (g) Im(/) en

est l'image. On en déduit aussitôt que Ker(/) et Im(/) sont stables par C.

Le fait que / définisse un isomorphisme de i?i/Ker(/) sur Im(/) est

immédiat.

Corollaire 1. La catégorie Comc est une catégorie abélienne et le

foncteur «module sous-jacent» est exact.

C'est clair.

Remarque. Il est non moins clair que le foncteur «module sous-jacent»

commute aux limites projectives finies et aux limites inductives quelconques.

Corollaire 2. Si V est un K-module injectif, le comodule C (g) F
est injectif dans Comc.

En effet, la proposition 1 montre que le foncteur

E Homc(i?, C (g) F)

est exact.

Proposition 3. Soit V un sous-module d'un comodule E, et soit
V° l'ensemble des éléments x e E tels que dE(x) appartienne à C (g) F.

Alors V° est un sous-comodule de E; c'est le plus grand sous-comodule
de E contenu dans V.

Il faut d'abord prouver que V° est stable par C, i.e. que dE applique V°
dans C(g) F0. Or V° est défini comme le noyau de l'homomorphisme
E C ® E C ® (E/ V), la première flèche étant dE. Puisque C est plat, il
s'ensuit que C (g) F0 est le noyau de l'homomorphisme

C®E-+C®C®E-+C®C®(E/V),
la première flèche étant lc ® dE. Pour prouver que dE(V°) est contenu dans
C (g) F0, il suffit donc de vérifier que le composé

V°^C®E~+C®C®E^C®C®(E/V)
est nul. Mais, d'après l'axiome (1) de la déf. 1, le composé (lc (g) dE) o dE
est égal à (d (g) l^-) o dE. Or dE applique V° dans C ® V par construction;
l'image de V° dans C ® C ® E est donc contenue dans (d ® lE) (C (g) F),
donc dans C (g) C (g) F, et son image dans C ® C ® (E/ V) est bien nulle.
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D'autre part, l'axiome (2) de la déf. 1 montre que V° est contenu dans

(e (x) 1E) (C(x) F), donc dans F. Enfin, il est clair que tout sous-comodule

de E contenu dans F est contenu dans F0, cqfd.

Nous dirons qu'un comodule est de type fini (resp. libre, projectif, si

c'est un Ä'-module de type fini (resp. un iCmodule libre, un iCmodule

projectif,

Corollaire. Supposons K noethérien. Tout comodule E est alors
réunion filtrante croissante de ses sous-comodules de type fini.

Il suffit évidemment de prouver ceci: si W est un sous-module de type fini
de E, il existe un sous-comodule de E, qui est de type fini et contient W. Or
dE(W) est un sous-module de type fini de C (x) E. On peut donc trouver un
sous-module F de type fini de E tel que C (x) F contienne dE(W). Soit V°
l'ensemble des x e E" tels que dE(x) e C (x) F. D'après la proposition, V° est

un sous-comodule de E contenu dans V, donc de type fini (puique K est

noethérien). Il est clair que V° contient W, cqfd.

§2. COGÈBRES SUR UN CORPS

A partir de maintenant, l'anneau de base K est un corps.

2.1. SOUS-COGÈBRES

Soit C une cogèbre sur K, de coproduit d et de co-unité e.

Définition 1. Un sous-espace vectoriel X de C est appelé une sous-

cogèbre de C si d(X) est contenu dans X ® X.

S'il en est ainsi, l'application linéaire dx'-X^X®X induite par d

munit X d'une structure de cogèbre, ayant pour co-unité la restriction

de e à X.

Exemples

1) Si (Xi)ieI est une famille de sous-cogèbres de C, la somme des Xt et

l'intersection des Xt sont des sous-cogèbres de C. Cela se vérifie au moyen
des formules:

E (XiQXi) c (E X,)® (E
n (Xi®Xi) =(ni;)®(n x,).
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2) Une sous-cogèbre de rang 1 (sur K) de C a pour base un élément non

nul x tel que d(x) x (x) x; on a alors e(x) 1.

3) Si D est une cogèbre, et si /: D -> C est un morphisme de cogèbres,

f(D) est une sous-eogèbre de C.

4) Soit E un comodule sur C, soit (*>/), e/ une base de E, et soient Cy e C

tels que dE{Vi) Hcz7®^, cf. n° 1.2, Remarque 3. Il résulte de la

formule (1 ') du n° 1.2 que le sous-espace vectoriel CE engendré par les Cy est

une sous-cogèbre de C. Cette sous-cogèbre ne dépend pas du choix de la

base (i>z), car c'est l'image de l'application E ® E' C associée à dE

(cf. n° 1.2, Remarque 2). On peut aussi caractériser CE comme le plus petit

sous-espace vectoriel X de C tel que Im(^) C X (S) E.

Noter que, si D est une sous-cogèbre de C contenant CE, le coproduit dE

applique E dans D (x) E, donc munit E d'une structure de D-comodule\
inversement, tout D-comodule peut évidemment être considéré comme un
C-comodule.

5) On peut appliquer la construction précédente en prenant pour E un
sous-comodule de C. Dans ce cas, la sous-cogèbre CE contient E. En effet, CE

est l'image de E (x) E' -> C; d'autre part la restriction de e à E est un élément

eE de E' et l'on vérifie tout de suite que, si x g E, l'image de x (x) eE dans C
est égale à x.

6) Supposons C de rang fini (sur K), et soit A l'algèbre duale
(cf. n° 1.1, Exemple 3). Les sous-cogèbres de C correspondent bijectivement
(par dualité) aux algèbres quotients de A (donc aussi aux idéaux bilatères
de A).

Théorème 1. La cogèbre C est réunion filtrante croissante de ses sous-
cogèbres de rang fini.

Il suffit de prouver que tout sous-espace vectoriel W de rang fini de C est
contenu dans une sous-cogèbre de rang fini. Or, d'après le corollaire à la
prop. 3 du n° 1.4, il existe un sous-comodule E de C qui est de rang fini
et contient W. La sous-cogèbre CE associée à E (cf. Exemple 4) répond à la
question: elle est évidemment de rang fini, et elle contient E (cf. Exemple 5),
donc W. Cqfd.

2.2. Dualité entre cogèbres et algèbres profinies

Définition 2. On appelle algèbre profinie une algèbre topologique
séparée, complète., possédant une base de voisinages de 0 formée d'idéaux
bilatères de codimension finie.
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Il revient au même de dire qu'une telle algèbre est limite projective filtrante
d'algèbres de rang fini; d'où le nom de «profini».

Soit maintenant C une cogèbre, et soit A C son dual. La structure de

cogèbre de C définit sur A une structure d'algèbre (cf. Alg. III); d'autre part,
on peut munir A de la topologie de la convergence simple sur C (K étant lui-
même muni de la topologie discrète).

Proposition 1. (a) L'algèbre topologique A C' est une algèbre

profinie. Les idéaux bilatères ouverts de A sont les orthogonaux des sous-
cogèbres de rang fini de C.

(b) Inversementy toute algèbreprofinie qui est associative etpossède un
élément unité est la duale d'une cogèbre possédant une co-unité, définie à

isomorphisme unique près.

Pour prouver (a), on remarque que C lim .X, où X parcourt l'ensemble
ordonné filtrant des sous-cogèbres de C de rang fini (cf. th. 1). On a alors

A \im.Xr et les X' sont des algèbres de rang fini. Le noyau de A X'
est l'orthogonal a* de Xdans A; c'est un idéal bilatère ouvert de codimension
finie. Inversement, soit a un tel idéal de A, et soit X son orthogonal dans C.

On a X ^4/a)'; la structure d'algèbre de A/a définit sur X une structure
de cogèbre, et on en déduit que X est une sous-cogèbre de C.

L'assertion (b) est tout aussi évidente.

La correspondance «cogèbres & algèbres profinies» établie ci-dessus se

prolonge en une correspondance «comodules & modules». De façon précise,

soient

Com^ la catégorie des C-comodules à gauche de rang fini,

Mod^ la catégorie des A-modules à gauche de rang fini, dont l'annu-
lateur est ouvert (i.e. qui sont des A -modules topologiques si on les munit de

la topologie discrète).
Si EeCom£, l'application E C (g> E définit par dualité une

application A ® E' -> E\ et l'on voit tout de suite que cette application fait de E'
un A -module à gauche topologique discret.

Proposition 2. Le foncteur E^> E' défini ci-dessus est une équivalence

de la catégorie Comfc sur la catégorie opposée à Mod^.
C'est immédiat.
Noter aussi que, si F est un A -module à gauche de rang fini, F' a une

structure naturelle de ^-module à gauche. En combinant cette remarque
avec la prop. 2, on obtient:
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Corollaire. La catégorie Comfc est isomorphe à la catégorie

Mod fAo.

Remarque. Soit E e Com^; munissons E' (resp. E) de la structure

correspondante de A -module à gauche (resp. à droite). Si x e E, x' e E' et

a, b e A, on a alors les formules:

(1) <dE(x), a®x'> <x,ax'> <xa,x'>
et

(2) <d(E\x), a ® b (g) x'> <x,abx'> <xab,x'>
avec

df (d® h) ° dE (le (8) dE) o dE

2.3. Traductions

Tout résultat sur les modules donne, grâce à la prop. 2 et à son corollaire,
un résultat correspondant sur les comodules. Voici quelques exemples:

a) Si E e Com^, la sous-cogèbre CE de C attachée à E (cf. n° 2.1) est

la duale de la sous-algèbre de End(i?) définie par la structure de module
de E.

b) Le fait que C soit un C-comodule injectif (cf. n° 1.4) est la traduction
du fait que A est un A -module projectif (puisque libre de rang 1

c) Une cogèbre est dite simple si elle est ^ 0 et n'admet pas d'autre sous-
cogèbre que 0 et elle-même; c'est alors le dual d'une algèbre simple de rang
fini. Elle est dite semi-simple si elle est somme de sous-cogèbres simples, et

on vérifie alors que l'on peut choisir cette somme de telle sorte qu'elle soit
directe.

On a:

Proposition 3. Pour que Comfc soit une catégorie semi-simple, il
faut et il suffit que C soit semi-simple.

De plus, si c'est le cas, et si Ea est une famille de représentants des classes
de comodules simples sur C, la cogèbre C est somme directe des cogèbres
CEa, qui sont simples.

On a également:

Corollaire. Les conditions suivantes sont équivalentes:

a) C est somme directe de cogèbres de la forme M„(i£).
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b) Conic est semi-simple, et tout objet simple de Comfc est
absolument simple.

C'est trivial à partir du résultat analogue pour les algèbres.

[Noter que ce résultat s'applique notamment à la bigèbre d'un groupe réductif
déployé sur K, lorsque car (K) 0. Mais, bien entendu, il ne donne que la
structure de cogèbre de la bigèbre en question, pas sa structure d'algèbre.]

d) A tout E e Com on peut associer un élément trace 0^ e C de la
manière suivante: E définit un morphisme de cogèbres

End (E)-+C (cf. n° 1.2)

et l'on prend l'image de \E dans C par ce morphisme. En termes d'une
base 0>i) de E, et des c/y e C correspondants (loc. cit.), on a 0£ £ C//.

i

[Voici encore une autre définition: si l'on regarde E comme module sur
l'algèbre C'E duale de CE, on a C'E C End (is), et la forme u h> Tr(w), étant
une forme linéaire sur CE, s'identifie à un élément de CE qui n'est autre
que 0£.]

Proposition 4. Supposons K de caractéristique 0. Soient Ex et

E2 deux comodules de rang fini, et soient 0i, 02 e C les traces correspondantes.

On a 0i 02 si et seulement si les quotients de Jordan-Hölder
de Ex et E2 coïncident (avec leurs mutiplicités).

En effet, le résultat dual (pour les modules de rang fini sur une algèbre)

est bien connu (Alg. VIII).

Corollaire. Si Ex et E2 sont semi-simples, on a 0i 02 si et
seulement si Ex et E2 sont isomorphes.

Remarques

1) On peut aussi donner des résultats lorsque car (K) ^ 0. Par exemple,
si les Ea sont des comodules absolument simples deux à deux non
isomorphes, les 0a correspondants sont linéairement indépendants sur K.

2) Les résultats précédents s'appliquent notamment aux représentations
linéaires d'un schéma en groupes (ou en monoïdes) affine sur K.

2.4. Correspondance entre sous-cogèbres et sous-catégories
de Comfc.

Si D est une sous-cogèbre de C, on a déjà remarqué que tout D-comodule

peut être considéré comme un C-comodule. On obtient ainsi un isomorphisme
de Comp sur une sous-catégorie abélienne D de Com^.
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Théorème 2. L'application D^D est une bijection de l'ensemble

des sous-cogèbres de C sur l'ensemble des sous-catégories L de Com£

vérifiant les conditions suivantes:

1) L est pleine (i.e. si E,F e L, on a HornL(E,F) HomC(F, F)),

2) L est stable par sommes directes finies,

3) Tout objet de Comfc qui est isomorphe à un sous-objet, ou à un

objet quotient, d'un objet de L, appartient à L.

[On se permet d'écrire E e L à la place de E e ob (F).]
Soit 0 l'ensemble des L vérifiant les conditions 1), 2), 3). Si L e 0, il est

clair que L est une catégorie abélienne ayant même sous-objets et mêmes objets

quotients que Com^. On notera C(L) la sous-cogèbre de C somme des

cogèbres CE, pour E e L. Le théorème va résulter des deux formules

suivantes :

a) C(D) D pour toute sous-cogèbre D de C;

b) C(L) L pour toute L e 0.
La première de ces deux formules est triviale: elle revient à dire que D est

réunion des sous-cogèbres CE, lorsque E parcourt l'ensemble des

F-comodules de rang fini, ce qui a été prouvé au n° 2.1. Pour la seconde, il
suffit de prouver ceci:

Lemme 1. Soit E un comodule de rang fini, soit CE C C la cogèbre
correspondante, et soit F un CE-comodule (considéré comme C-comodule)
de rang fini. Il existe alors un entier n ^ 0 tel que F soit isomorphe à un
sous-comodule d'un quotient de En.

Par dualité, cela revient à dire que, si B est une algèbre de rang fini, et
E un F-module fidèle, tout F-module de type fini F est isomorphe à un
quotient d'un sous-module d'un En. Or F est isomorphe à un quotient d'un
module libre Bq, et l'on est ramené à prouver que Bq est isomorphe à un
sous-module d'un En\ il suffit d'ailleurs de le faire pour q 1. Mais c'est
clair: si E est engendré par xx, xn, l'application b (bxx, bxn) est une
injection de B dans En, puisque E est fidèle. D'où le lemme, et, avec lui, le
théorème.

Remarques

1) Le lecteur peut à volonté interpréter Com£ comme une petite
catégorie (relative à un univers fixé, par exemple), ou une grosse. Le
th. 2 est correct dans l'une ou l'autre interprétation.
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2) Il n'est pas indispensable de passer aux modules pour prouver le

lemme 1. On remarque d'abord (cf. n° 1.4, Exemple 2) que Fest isomorphe
à un sous-comodule de (x) F, i.e. de (CE)n, avec n rang(F). D'autre
part, CE est isomorphe, comme comodule, à un quotient de F(x)F',
c'est-à-dire de Fm, où m rang (F). D'où le résultat.

Exemples

1) La sous-catégorie de Com£ formée des objets semi-simples correspond

à la plus grande sous-cogèbre semi-simple de C (la somme de toutes les

sous-cogèbres simples).

2) Supposons C semi-simple, et soit (F/)/e/ un ensemble de

représentants des classes de C-comodules simples. Posons C, CE., de sorte

que C est somme directe des cogèbres simples C/. Si J est une partie
de /, Cj Yé Ci est une sous-cogèbre de C, et toute sous-cogèbre de C

/ e J
s'obtient de cette manière, et de façon unique. La sous-catégorie correspondant
à Cj est formée des comodules isomorphes à des sommes directes finies
des Ej J e J.

2.5. OÙ L'ON CARACTÉRISE Comfc

Soit M une catégorie abélienne munie des deux structures suivantes :

a) M est une catégorie sur F; cela signifie que, si F, F sont des objets de

M, HomM(F, F) est muni d'une structure de F-espace vectoriel, la composition

des morphismes étant bilinéaire.

b) On se donne un foncteur v : M -* Vect^ de M dans la catégorie des

F-espaces vectoriels de dimension finie.

On fait les hypothèses suivantes:

(i) Le foncteur u est K-linéairey i.e. pour tout F, F e M, l'application
u: HomM(E,F) Hom(i>(F), v(Fj) est F-linéaire.

(ii) Le foncteur v est exact et fidèle.

Théorème 3. Sous les hypothèses ci-dessus, il existe une cogèbre C

sur F (et une seule, à isomorphisme près) telle que M soit équivalente à

Comfc, cette équivalence transformant le foncteur u en le foncteur
C-module espace vectoriel sous-jacent.

[Ici, il est nécessaire d'interpréter M comme une petite catégorie, ou en tout
cas de supposer qu'il existe un ensemble de représentants pour les classes

d'isomorphisme d'objets de M.]
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Avant de commencer la démonstration, remarquons que les hypothèses (i)

et (ii) entraînent que HomM(Is, F) est un espace vectoriel de dimension finie
pour tout E, F e M. De plus, un sous-objet d'un objet E de M est connu

lorsqu'on connaît le sous-espace vectoriel correspondant de u(E); l'ensemble
des sous-objets de E s'identifie ainsi à un sous-ensemble réticulé de l'ensemble
des sous-espaces vectoriels de v(E); en particulier, E est de longueur finie. On

a des résultats analogues pour les objets quotients.
D'autre part, si E e M, nous noterons ME la sous-catégorie pleine de M

formée des quotients F/ G, où F est isomorphe à un sous-objet d'un
En (n entier > 0 quelconque).

Enfin, si E est un objet de M, et si X est une partie de V(E), nous dirons

que X engendre E si tout sous-objet F de E tel que v{F) D X est égal à E.

Démonstration du théorème 3

a) Le cas fini; une majoration.

C'est celui où il existe un objet E de M tel que ME M. Soit n rangKu(E).

Lemme 2. Soit F un objet de M pouvant être engendré par un
élément (cf. ci-dessus). On a

rangKu(F) < n2

Par hypothèse, on peut écrire F comme quotient Fx/F2i où Fx est

isomorphe à un sous-objet d'un Em, pour m convenable. Soit x e u(F)
engendrant F et soit xx un élément de d(Fx) dont l'image dans u(F) est x.
Soit G le plus petit sous-objet de Em tel que u(G) contienne xx. On a G C Fx

et l'image de G dans F Fx/F2 est égale à F. Il suffit donc de prouver que
rang*y(G) ^ n2. Si m ^ n, c'est évident. Supposons donc que m > n. On a

xx e u(G) C u(Em) u(E)m. Soient yu les composantes de Xi,
considéré comme élément de u(E)m. Puisque m > n, il existe des at e K, non
tous nuls, tels que P a^i 0. Or les at définissent un morphisme surjectif
Em -> E; si N est le noyau de ce morphisme, on a N - Em~l, comme on le
voit facilement. D'autre part, on a xx e u(N), d'où G C N puisque xx
engendre G. On a donc obtenu un plongement de G dans Em~1 ; d'où le
lemme, en raisonnant par récurrence sur m.

b) Le cas fini; construction d'un générateur projectif
Les hypothèses étant les mêmes que ci-dessus, on choisit un objet P de M

pouvant être engendré par un élément x u(P), et tel que u(P) soit de rang
maximum parmi ceux jouissant de cette propriété. C'est possible en vertu du
Lemme 2.
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Lemme 3. (i) Le couple (P, x) représente le foncteur u.

(ii) P est un générateur projectif de M.

Il suffit de prouver (i); l'assertion (ii) en résultera, puisque le foncteur v

est exact et fidèle.

Soient donc F e M, et y e v(F). Il nous faut prouver l'existence et l'unicité
d'un morphisme / : P -> F transformant x en y. L'unicité provient de ce

que x engendre P. Pour démontrer l'existence, soit Q le plus petit sous-objet
de P x F tel que v(Q) contienne (x, y). Le morphisme Q — F induit par pri
est surjectif, du fait que P est engendré par x. On a donc

rangKv(Q) ^ rangKv(P) ;

mais le caractère maximal de u(P) entraîne qu'il y a égalité; le morphisme
Q P est donc un isomorphisme. En composant son inverse avec la seconde

projection Q - P, on obtient un morphisme / ayant la propriété voulue.

c) Le cas fini; fin de démonstration.

Soit A l'algèbre des endomorphismes de P. C'est une P-algèbre de

dimension finie. Le lemme suivant est bien connu:

Lemme 4. Il existe un foncteur (p: Mod^o M et un seul (à isomorphisme

près) qui soit exact à gauche et transforme A (considéré comme
A -module à droite) en P. Ce foncteur est une équivalence de catégories.

Indiquons brièvement la démonstration. Pour chaque A -module à droite

H de rang fini, on choisit une présentation finie de H:

AP A* -> H-+ 0

où a est une p x q-matrice à coefficients dans A. Cette matrice définit un
morphisme Pp -> Pq et l'on prend pour cp(if) le conoyau de ce morphisme.
On prolonge de façon évidente (p en un foncteur Mod^o -Met l'on vérifie

qu'il a la propriété voulue. On note généralement ce foncteur H h» H (x)A P.

C'est un adjoint du foncteur HomM(P, F). Son unicité est immédiate.

Le fait que ce soit une équivalence résulte de ce que P est un générateur

projectif de M.
De plus, l'équivalence cp :H^H®AP transforme le foncteur «espace

vectoriel sous-jacent à un A -module» en un foncteur isomorphe à v (en effet
le premier foncteur est représentable par A, le second par P, et (p transforme
A en P). On peut donc prendre pour cogèbre la cogèbre duale de l'algèbre A,
et toutes les conditions sont vérifiées.
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d) Cas général.

Soit X l'ensemble des sous-catégories N de M telles qu'il existe E e M avec

N Me- L'ensemble X est ordonné filtrant puisque ME{xe2 contient MEï et

MEl. Si N e X, soit comme ci-dessus (PNixN) un couple représentant la

restriction à TV du foncteur v, et soit AN End(PAr). Si Ni D N2, il existe un

unique morphisme Pn2 transformant xEfl en Xm2\ °n v°it aisément que

ce morphisme identifie PNl au plus grand quotient de PNl appartenant ä N2.

En particulier, tout endomorphisme de PN{ définit par passage au quotient

un endomorphisme de PNl. D'où un homomorphisme ANl->AN2 qui est

surjectif. Si A désigne l'algèbre profinie limite projective des AN, pour
N e X, il est alors clair que la cogèbre duale de A répond à la question.

Quant à Vunicité de cette cogèbre (ou de l'algèbre A), elle provient de la

remarque suivante: A est isomorphe à l'algèbre des endomorphismes du

foncteur v, munie de la topologie de la convergence simple.

Remarque. Il est probablement possible d'éviter le passage par le cas

M Me, en utilisant le théorème de Grothendieck disant qu'un foncteur
exact à droite est proreprésentable: on appliquerait ce théorème à u, d'où
P e Pro M représentant u et on obtiendrait A comme l'algèbre des

endomorphismes de P.

§3. Bigèbres

3.1. Définitions et conventions

(Dans ce n°, ainsi que dans le suivant, on ne suppose pas que K soit un
corps.)

Rappelons (cf. Alg. III) qu'une bigèbre sur K est un AT-module C muni
d'une structure de cogèbre d:C C ® C et d'une structure d'algèbre
m : C (x) C -> C, ces structures vérifiant l'axiome suivant:

(i) Si l'on munit C (x) C de la structure d'algèbre produit tensoriel de celle
de C par elle-même, d est un homomorphisme d'algèbres de C dans C (x) C.

Cet axiome équivaut d'ailleurs à:

(i') L'application m : C (x) C - C est un morphisme de cogèbres (pour la
structure naturelle de cogèbre de C (x) C).

Dans tout ce qui suit, nous réserverons le terme de bigèbres à celles vérifiant
les conditions suivantes:

(ii) La cogèbre (C, d) possède une co-unité e :C -> K.

(iii) L'algèbre (C, m) est commutative, associative, et possède un élément
unité 1.
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(iv) La co-unité e: C -> K est un morphisme d'algèbres et e(Y) 1.

(v) On a d{1) 1 (x) 1.

La condition (iii) permet de considérer C comme Yalgèbre affine d'un schéma

affine G sur K; on a G Spec (C). Pour tout Kx e Alg^, on note G(KX)
l'ensemble des points de G à valeurs dans Kx, autrement dit l'ensemble des

morphismes (au sens de Alg*) de C dans Kx. La condition (iv) signifie
que e est un élément de G(K). Grâce aux conditions (i) et (v), la structure de

cogèbre de C peut être interprétée comme un morphisme de G x G dans G,

qui est associatif et admet e pour élément neutre. Ainsi G est un schéma affine
en monoïdes sur K; pour tout Kx e AlgKi G(KX) a une structure naturelle de

monoïde, d'élément neutre l'image de e dans G(KX), image que l'on se

permet de noter encore e.

On appelle inversion sur G, toute application i: C -> C ayant les propriétés
suivantes :

a) i est un morphisme d'algèbres, et /(1) 1.

b) m o (lç- (x) /) o d est égal à l'endomorphisme c e(c). 1 de G.

La condition a) permet d'interpréter i comme un morphisme I: G G et la
condition b) signifie que x.I{x) e pour tout x e G(KX), et tout Kx. On voit
ainsi que, si i existe, il est unique, et que c'est un isomorphisme de C sur la

bigèbre opposée C°. L'existence de i revient à dire que G est un schéma

en groupes.

Remarque. L'application identique C -> C est un point de G (G), appelé

point canonique; nous le noterons y. De même, on peut interpréter une
inversion i de C comme un point i de G (G) et la condition b) signifie que

y\ e.

3.2. Correspondance entre comodules et G-modules

Soit E un module. Si Kx e Alg*, nous noterons End^^) le monoïde des

endomorphismes du ^-module Kx (x) E, et AutE(KX) le groupe des éléments

inversibles de End^^i). Si Kx K2 est un morphisme, on définit de manière

évidente le morphisme correspondant de End^i^) dans End^iG)- Ainsi
End^ est un foncteur de Alg^ dans la catégorie Mon des monoïdes ; de même

AutE est un foncteur de Alg^ dans la catégorie Gr des groupes.
Soient maintenant C et G Spec (C) comme ci-dessus. On a vu que G

définit un foncteur (noté également G) de Alg^ dans Mon; ce foncteur est à

valeurs dans Gr si G est un schéma en groupes.

Définition 1. On appelle représentation linéaire de G dans E tout
morphisme p du foncteur G dans le foncteur End^.
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En d'autres termes, p consiste en la donnée, pour tout Kx e Alg#, d'un

morphisme de monoïdes p(^Ti) : G(KX) End^^i) et, si Kx K2 est un

morphisme dans Alg^, le diagramme

G(KX) - G(K2)

p(*,) i l P(K2)

End£(K,)- End£(A-2)

doit être commutatif.

Terminologie. Une représentation linéaire du monoïde G0 opposé à G

est appelée une antireprésentation de G. Un module E, muni d'une
représentation (resp. antireprésentation) G-> End£ est appelé un G-module à

gauche (resp. à droite).

Remarque. Si G est un schéma en groupes, et si p: G End^ est une
représentation linéaire de G dans E, il est clair que p prend ses valeurs dans
le sous-foncteur AutE de End£.

Notons maintenant Gens le foncteur G, considéré comme foncteur à

valeurs dans Ens (i.e. le composé Alg^ -S Mon -> Ens); définissons de même

End|ns. Soit p un morphisme de Gens dans End^ns. L'image par p(C) du

point canonique y e G(C) est un C-endomorphisme de C (x) E, donc est

définie par une application ^-linéaire d(p) : E -* C 0 E.

Proposition 1. (a) L'application ç>^>d(ç>) est une bijection
de l'ensemble des morphismes de Gens dans End^ns sur l'ensemble
Hom(E, C <S) E).

(b) Pour que p: Gens End^ns soit une représentation linéaire (resp.
une antireprésentation linéaire) de G dans E, il faut et il suffit que d(p)
munisse E d'une structure de C-comodule à droite (resp. à gauche).

C'est là un résultat bien connu (cf. SGAD, exposé I). Rappelons la
démonstration :

L'assertion (a) provient de ce que Gens est représentable par le couple
(C, y). En particulier, si x e G(KX), l'image de x par p(^) est l'application
K\-linéaire de Kx (x) E dans K\ (x) E qui prolonge l'application linéaire
(x (g) U) o d(p) de E dans Kx (x) E.

Pour (b), on peut se borner au cas des antireprésentations. Il faut d'abord
exprimer que p(^) transforme e en 1 pour tout Kx, et il suffit de le faire
pour Kx K. Cela donne la condition

(e (x) 1E) o d(p) \E

qui est l'axiome (2) des comodules.
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Il faut ensuite exprimer que le diagramme

Gens x Gens

a I

P^P End|ns x End"

I ß

£pens
P

End^ns

(où a désigne la loi de composition de G et ß Vopposée de la loi de

composition de End^) est commutatif. Notons Yi (resp. y2) l'homo-
morphisme de C dans C (x) C qui applique x e C dans x (x) 1 (resp. 1 (x) x);
on a Yi, y2 e G(C (x) C). De plus, il est immédiat que le foncteur Gens x Gens

est représentable par (C (x) C, yi x y2). Il suffit donc d'exprimer que les deux

images de yx x y2 dans EndE(C (x) C) coïncident. Or l'image de Yi x y2 dans

G(C(x)C) est le point donné par d\C~*C®C\ son image dans

EndE(C (x) C), identifié à Hom(E, C (g) C (x) E) est donc (d (x) 1^) o d(p). Il
faut ensuite calculer l'image de Yi x y2 par G x G P^P End^ X End^ End^.
On trouve, après un calcul sans difficultés [cf. ci-après] l'élément

(lc ® rf(p» ° rf(p). La commutativité du diagramme considéré équivaut
donc à l'axiome (1) des comodules, ce qui achève de démontrer la proposition.

[Voici le «calcul sans difficultés» en question. Il s'agit de déterminer

l'image (p e End^(C(x) C) de Yi x y2 par ß o (p x p). Si cpi (resp. (p2) est

l'image de Yi (resp. y2) par p, on a cp cp2 o cpj (puisque ß est Y opposée de

la loi de composition). De plus, cp, est caractérisé par le fait de prolonger
l'application ^-linéaire (y, ® 1^) o c/(p) : E -+ C (x) E -+ C (x) C ® E. Soit

alors x e E, et posons:

d(p) (x) £ ^(x)Xi,d(p) (x,) £ Cy 0 Xy

On a:

<Pi W (Yi 0 l£) £ Ci 0 Xi) £ 0 1 0
De même:

<P2 (Jfl) I 1 ® Cy (g) X,7

D'où:

<p(x) cp2(<Pi(x)) £ (P2(c, (X) 1 (X) X,)

£ (c,- 0 1). £ 1 ® Cij 0 Xy (<p2 étant C 0 C-linéaire)

£ C; 0 Cy 0 Xy
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D'autre part, on a

((le ® d(p))o d{p))(X) (le ® p)) (I Ci ® X/)

IC, ® Cy ® Ay

En comparant, on voit bien que l'on a

(p (lc0rf(p)) ° ^(P) •]

Remarque. La proposition précédente permet donc d'identifier les

G-modules à gauche aux C-comodules à droite, et inversement. [Il est bien

triste d'avoir ainsi à échanger sa droite et sa gauche, mais on n'y peut rien.

Toutefois, lorsque G est un schéma en groupes, on peut, au moyen de l'inverse,

transformer canoniquement tout module à droite en un module à gauche.]

Exemple. La représentation triviale p 1 de G dans un module E
correspond à la structure de comodule x h* 1 0 x sur E. Pour E K on
obtient le comodule unité.

Opérations sur les comodules

a) Produit tensoriel.

Si Ex et E2 sont des C-modules (à gauche, par exemple), on a défini
au n° 1.2 une structure de C ® C-comodule sur EX®E2. Comme

m : C ® C -> C est un morphisme de cogèbres, on déduit de là une structure
de C-comodule sur Ex ® E2. Du fait que m est commutative, cette structure
ne dépend pas de l'ordre dans lequel on écrit E\ et E2. Elle correspond
(via la prop. 1) à l'opération évidente de produit tensoriel de G-modules (la
vérification de ce fait est immédiate).

b) Contragrédiente.

Supposons que C admette une inversion, et soit E un C-comodule à gauche
qui est projectif de type fini comme module. En utilisant les isomorphismes

Hom(£, C (g) E) - Hom(E (x) E' 9 C) - Hom(£", C (x) E')

on définit sur E' une structure de C-module à droite. En utilisant l'inversion

i, on transforme cette structure en une structure de C-comodule à gauche,
dite contragrédiente de celle donnée sur E et notée Ë. Elle correspond (via la
prop. 1) à l'opération évidente de «contragrédiente d'une représentation».
[L'hypothèse faite sur E sert à assurer que le foncteur «dual» commute au
foncteur «extension des scalaires».]
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3.3. SOUS-BIGÈBRES

(On suppose à nouveau que K est un corps.)
Soit C une bigèbre (vérifiant les conditions du n° 3.1), et soit L une sous-

catégorie abélienne de Com£ vérifiant les conditions 1), 2), 3) du th. 2 du
n° 2.4, i.e. provenant d'une sous-cogèbre D de C.

Proposition 2. Pour que D soit une sous-bigèbre de C contenant 1,

il faut et il suffit que L soit stable par produit tensoriel et contienne le

comodule unité K.

La nécessité est triviale. Supposons donc que L soit stable par 0 et
contienne K. On sait (cf. n° 2.4) que D est réunion des cogèbres CE attachées

aux comodules E e L. Le fait que D soit stable par le produit résultera donc
du lemme suivant:

Lemme 1. Si E et F sont des comodules de rang fini, on a

(*) CE 0 F CE. CF

En effet, on vérifie tout de suite que CE 0 CF est la sous-cogèbre de C 0 C
attachée au C 0 C-comodule E (S) F. Comme Ce®f est l'image de cette
dernière par m : C 0 C C, c'est bien CE.CF.

Le fait que D contienne 1 provient de ce que CE K. 1 si E K.

Proposition 3. Supposons que C ait une inversion i. Pour que D
soit stable par i, il faut et il suffit que L soit stable par le foncteur
« contragrédiente».

Cela résulte, comme ci-dessus, de la formule:

(**) Cë= i(CE)

Corollaire. Supposons que G Spec(C) soit un schéma en

groupes. Soit Mod ^ Ici catégorie des G-modules de rang fini, et soit L
une sous-catégorie abélienne de Mod^. Pour qu'il existe un quotient H
de G tel que L Mod^, il faut et il suffit que L vérifie les conditions

1), 2), 3) du th. 2 du n° 2.4, soit stable par les opérations

«produit tensoriel» et «contragrédiente», et contienne le G-module unité K;
le groupe H en question est alors unique.

Ce n'est qu'une reformulation des props. 2 et 3, étant entendu que

«groupe quotient» est pris pour synonyme de «sous-bigèbre contenant 1».

L'unicité de H provient du th. 2 du n° 2.4.
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[Il y a un résultat plus général, dû sauf erreur à Grothendieck, et que
le rédacteur a la flemme de rédiger en détail. Au lieu de se donner, comme

ici, une sous-cogèbre d'une bigèbre, on se donne seulement une cogèbre D et

une opération de «produit tensoriel» sur la catégorie M ComfD

correspondante (la donnée de D est d'ailleurs équivalente à celle du couple formé
de M et du foncteur u: M -> Vect^, cf. n° 2.5, th. 3). En imposant
à ce produit tensoriel des conditions raisonnables (en particulier
v(E 0 F) — v{E) (x) v(F)) on démontre alors qu'il provient d'une structure de

bigèbre bien déterminée sur D\ cette bigèbre a un élément unité si M contient
un élément unité pour le produit tensoriel; elle a une inversion, si l'on se donne

une opération «contragrédiente». (Au lieu de se donner le produit tensoriel
et la contragrédiente, on peut aussi se donner un foncteur «Horn».)

Grothendieck a rencontré cette situation avec K Q, M catégorie des

motifs sur un corps de base k et v foncteur «cohomologie à valeurs
dans Q» relativement à un plongement de k dans C.]

3.4. Une interprétation des points de G

Soit K{ e Alg^ et soit g e G(KX) un point de G à valeurs dans Kx. Pour
tout E e Comfc, notons g(E) l'image de g par l'antireprésentation

Q(E):G(Ki)^EndE(Ki)
On a donc g(E) e End^i) End^C^ (x) E), et de plus:

(i) g(K) lKl

(ii) g(Ei®E2) g(Ei) ® g(E2).

Réciproquement :

Proposition 4. Soit vKl : Coniç. Modj^ le foncteur qui associe à
tout E e Com£ le Kx-module Kx (x) E. Soit (p: Vxl un endo-
morphisme de uKl vérifiant les relations (i) et (ii) ci-dessus. Il existe alors
un élément unique g e G(KX) tel que cp g.

D'après 3.2, l'application G(KX) - End^) est un antihomomorphisme
de monoïdes. La prop. 4 donne donc:

Corollaire. Le monoïde G(KX) est isomorphe à l'opposé du
monoïde des endomorphismes de vKl vérifiant (i) et (ii).

[C'est là un résultat analogue au théorème de dualité de Tannaka; on
reviendra là-dessus plus loin.]
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Remarques

1) Dans l'énoncé de la prop. 4, on peut remplacer Comfc par Comc;
cela revient au même, du fait que tout objet de Comc est limite inductive
d'objets de ComfC) cf. §1.

2) Lorsque G est un schéma en groupes, les g{E) vérifient la relation
suivante (qui est donc conséquence de (i) et (ii):

(iii) g(É) g(E)\
Démonstration de la proposition 4.

Tout d'abord, soit u e Hom(C, Ki). Pour tout E e Comc, soit cpu(E)

l'endomorphisme de Kx (x) E qui prolonge l'application linéaire
dE u (g) 1

E 4 C®E Ki (g) E

On obtient ainsi un endomorphisme cpu de uKl -

Lemme 1. L'application u cpM est un isomorphisme de Hom(C, Kx}
sur le groupe des endomorphismes du Joncteur uKl.

[En fait, c'est un isomorphisme de j^-algèbres, à condition de mettre sur

Hom(C, Ki) la structure d'algèbre opposée de celle à laquelle on pense.]

Si cp e Bnd(^), formons le composé

C -> Ki® C ^ Ki® C Ki

(la première application étant x 1 (x) x, la seconde (p (C) et la troisième

I (x) e). On obtient une application linéaire

u (cp) : C -> K\

II suffit de prouver que les applications u e* cpw et cp^w(cp) sont inverses

l'une de l'autre.
Tout d'abord, si u e Hom(C, Ki), u(cpM) est le composé

d u <g) 1 1 (g) e

c-»c®c^^®c-» Ji:,,

ou encore
d 1 ® e u

C-+ C (x) C C-+Kl

c'est-à-dire w.

Soit maintenant cp e End(^). Si E est un comodule, et V un K-qspace

vectoriel, on a cp (E (x) E) cp (E) ® 1 f • (Se ramener au cas où V est de

dimension finie, puis choisir une base de V et utiliser le fait que cp est un



GÈBRES 59

morphisme de foncteurs.) En particulier, on a ^(C®!?) — (p(C) ® \E si

E e Comc. Comme dE : E C ® E est un morphisme de comodules, on a un

diagramme commutatif:
1 (g) dE

E -»• ^ ® £ -> Ki (g) C

(|)(£) I <p(C)® 1 1

1 0 C(g) 1 _^ (g) E -> 0 c (g) £ ® £.
1 <g> dE

Mais le composé (1 ® c (x) 1) ° (1 ® dE) est l'identité. En utilisant la

commutativité du diagramme, on en déduit alors que le composé
q> (E)

E Ki ® E Kl ®E
est égal à (pu(£), avec u u(tp), d'où le lemme.

[Ce lemme n'a rien à voir avec les bigèbres. On aurait pu le remonter

au §2 et le déduire de l'isomorphisme Com£ ComfAo du n° 2.2.]

Lemme 2. (a) Pour que (pw vérifie la relation (i), il faut et il suffit
que u{ 1) 1.

(b) Pour que (pM vérifie la relation (ii), il faut et il suffit que u soit

un homomorphisme d'algèbres.

Si l'on prend pour E le module unité K, on a Ki (x) E K\ et (pU(E) est

la multiplication par u(1) dans Kx \ d'où (a).

Pour (b), on remarque d'abord que (ii) est vérifiée si et seulement si elle

l'est pour Ei E2 - C, i.e. si

(ii') (pM(C (x) C) cpw(C) (x) (pM(C).

Cela résulte simplement de ce que tout comodule est isomorphe à un sous-
comodule d'une somme directe de comodules tous isomorphes à C.

Reste à exprimer la condition (ii7). Soit (Xi)ieI une base de C, soient

a, b e C, et écrivons d(a) et d(b) sous la forme

d(a) £ ai (x) Xi, ai e C

d(b) £ bj ® Xj bj e C

On a alors:

cpw(C) {a) £ u(ai) ® */ > avec u{at) e Ky
et

(pu(C) (b) Y u(bj) ® Xj, avec u(bj) e K{

D'où:

(*) ((Pii(C) (g) cpu(C)) (a® b) - £ u(ai)u(bj) ® xt ® Xj
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Soit d'autre part cf:C(x)C->C(x)C(x)Cle coproduit du comodule C (g) C.

On vérifie sans difficulté que l'on a

d'(a (g) b) Yé aibJ ® xi ® XJ >

ij
d'où

(**) <pu(C (X) C) (a (g) ô) 2 i/(ûr/6/) (g) ® xy

ij
En comparant (*) et (**), on voit que (pU(C ® C) (pM(C) ® cpw(C) si w est

un homomorphisme d'algèbres. Pour prouver la réciproque, choisissons pour
(Xj)i / une base telle que 1 pour un élément 0 e / et e(x;) 0 pour
i ^ 0. On a alors a0 a et b0 ù, et l'égalité de (*) et (**) entraîne

u(a)u(b) u(ab), ce qui achève la démonstration.

La prop. 4 est une conséquence immédiate des deux lemmes ci-dessus.

En effet, un élément de G(KX) est par définition un homomorphisme
d'algèbres u\C~+ K\ tel que u( 1) 1. La seule chose à vérifier, c'est que,

pour tout comodule E, l'endomorphisme u(E) de Kx (g) E défini par u est

égal à (pw(ii): or c'est justement la définition de u(E), cf. démonstration de

la prop. 1.

Exemple. Prenons pour K{ l'algèbre des nombres duaux sur K. La

prop. 4 fournit alors un anti-isomorphisme de l'algèbre de Lie de G sur la sous-

algèbre de Lie de End(i>) formée des endomorphismes 0 de u tels que

Q(K) 0 et 0(^ (g) E2) - Q(Et) ® lEl + \Ei ® 9(30 •

3.5. Interprétation de G comme limite projective de groupes
ALGÉBRIQUES LINÉAIRES

Définition 2. On dit que C est de type fini (ou que G est algébrique
linéaire) si C est de type fini comme algèbre sur K.

Proposition 5. Soit C une bigèbre (resp. une bigèbre possédant une
inversion i). Alors C est limite inductive filtrante de ses sous-bigèbres de type

fini contenant 1 (resp. et stables par i).

L'énoncé contenant les «resp.» équivaut à:

Corollaire. Le schéma en groupes G associé à C est limite

projective filtrante de groupes algébriques linéaires.

On va prouver un résultat plus précis. Soit E un C-comodule (à droite, pour
changer un peu) de rang fini et soit CE la sous-cogèbre de C correspondante.
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Pour tout n ^ 0, soit CE(n) la sous-cogèbre attachée au comodule ® E\
n

pour n 0, on convient comme d'ordinaire que (x) E K, de sorte que

C^(0) K. 1. On sait (cf. lemme 1) que

CE(n) CE...CE (n facteurs)

Il en résulte que

C(£)= I CE(n)
ri 0

est la sous-algèbre de C engendrée par CE et 1. D'où:

Proposition 6. L'algèbre C(E) est une sous-bigèbre de C contenant

1 et de type fini; c'est la plus petite sous-bigèbre de C contenant 1

et CE.

Comme C est visiblement limite inductive des C(E), cela démontre la

première partie de la prop. 5. D'autre part, lorsque C possède une
inversion /, la seconde partie de la prop. 5 résulte de la proposition plus précise

(mais évidente) suivante:

Proposition 7. L'algèbre C(E@E) est une sous-bigèbre de C

contenant 1 et stable par i; c'est la plus petite sous-bigèbre de C ayant
ces propriétés; elle est de type fini.

Si l'on note XE (resp. GE) le monoïde (resp. groupe) algébrique linéaire
associé à C(E) (resp. à C(E © E)), on voit que l'on a

G \im.XE (resp. G lim.G^)

Remarques

1) La construction de C(E © É) à partir de C(E) peut aussi se faire de

la manière suivante: au G-module E est associé un élément «déterminant»
6e, qui est un élément inversible de C, contenu dans C{E). On a:

C(E ®E) C(E)
1

&E

2) L'interprétation de XE et GE en termes de schémas est la suivante:
XE (resp. Ge) est le plus petit sous-schéma fermé du schéma End£ (resp.
GL£) des endomorphismes (resp. automorphismes) de E contenant l'image de
la représentation p : G End^ attachée à E. Cela se vérifie immédiatement
sur la construction de l'algèbre affine de End^ (resp. GE), construction que
le rédacteur trouve inutile de reproduire.
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Définition 3. Soit C une bigèbre possédant une inversion. Un
C-comodule E de rang fini est dit fidèle si C(E © È) C.

Vu ce qui précède, E est fidèle si et seulement si G -> GE est un isomor-
phisme.

Propositions. Si E est fidèle, toute représentation linéaire de G est

quotient d'une sous-représentation d'une somme directe de représentations
®{E@É).

Cela résulte du lemme 1 du n° 2.4.

Corollaire. Tout G-module simple est quotient de Jordan-Hölder
d'un ® {E © È).

Remarques

1) Dans le corollaire ci-dessus, on peut remplacer les puissances ten-
v n m

sorielles de E®E par les représentations © E ® det (E) ~1, avec des

notations évidentes.

2) Il se peut que GE soit fermé dans End^ (et non pas seulement dans

GL£), autrement dit que C(E) C(E © E). C'est le cas, par exemple, si GE

est contenu dans SL^. Dans ce cas, la prop. 8 et son corollaire se simplifient:
on peut remplacer les puissances tensorielles de E © E par celles de E.

§4. Enveloppes

4.1. COMPLÉTION D'UNE ALGÈBRE

[Ce sorite pourrait remonter au n° 2.2.]

Soit A une algèbre associative à élément unité. Soit Sd (resp. Sg9S)
l'ensemble des idéaux à droite (resp. à gauche, resp. bilatères) de codimension

finie dans A. On a Sd n Sg S et S est cofinal à la fois dans Sd et dans Sg;

en effet, si o e Sg par exemple, l'annulateur du ^4-module A/a appartient à S

et est contenu dans a.

On posera:

A lim.^4/a
<—

la limite projective étant prise sur l'ensemble ordonné filtrant S. L'algèbre A
est l'algèbre profinie complétée de A, pour la topologie définie par S (ou Sd,

ou 5g, cela revient au même). Il y a un isomorphisme évident de la catégorie
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des A-modules de rang fini sur celle des A-modules topologiques discrets de

rang fini.
Soit Fie dual de A; on le munit de sa structure naturelle de ^4-bimodule.

Si a e S, soit Fa l'orthogonal de a dans F. Soit C la réunion des Fa, pour
a e S. Le dual de C (resp. le dual topologique de A) s'identifie de façon
évidente à À (resp. à C). D'après le n° 2.2, il y a donc sur C une structure
de cogèbre, caractérisée par la formule:

(1) < d(c), a ® b> <c, ab > si c e C, a, b e A

De plus, tout ^4-module à droite de rang fini est muni canoniquement d'une

structure de comodule à gauche sur C, et réciproquement; on a

(2) < dE(x), a ® x' > <xa,x' > si x e F, x' e F', a e A

d'après la formule (1) du n° 2.2.

Les éléments de la cogèbre C peuvent être caractérisés de la manière
suivante :

Lemme 1. Soit f un élément du dual F de A. Les conditions
suivantes sont équivalentes:

(a) f e C.

(b) (resp. (b')) Le sous-A-module à gauche (resp. à droite) de F
engendré par f est de rang fini.

(c) Il existe un A-module à droite E de rang fini, et des éléments

Xi e F, x' e E' en nombre fini, tels que

< f, a> £ < Xiü, x'i > pour tout a e A

La condition (b) signifie que l'annulateur de / dans le y4-module à

gauche F appartient à 5^; comme S est cofinal dans Sg, cela revient à dire
que / appartient à C. On démontre de même que (a) & (b').

D'autre part, pour un module E donné, la condition (c) signifie que /
appartient à la sous-cogèbre CE de C attachée à E (cf. n° 2.1). Comme C est
réunion des CE, cela prouve que (a) ^ (c).

[On laisse au lecteur le plaisir de démontrer directement l'équivalence
(b) * (c).]
4.2. La bigèbre d'un groupe

On applique ce qui précède à l'algèbre A K[T] d'un groupe 37. Le dual
F F{T) de A est l'espace des fonctions sur F; la dualité entre A et F
s'exprime par la formule:

</, I ^iJi> E si / e F, Xt e K,yt e T
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La cogèbre correspondante est notée C C(T). Elle jouit des propriétés
suivantes :

(i) La co-unité de C est l'application e: f ^ /(1).

(ii) Pour qu'une fonction / appartienne à C, il faut et il suffit que ses
translatées (à gauche ou à droite) engendrent un K-espace vectoriel de
dimension finie. (C'est l'équivalence (a) ^ (b) du Lemme L)

(iii) Identifions à la façon habituelle les éléments de F 0 F aux fonctions
décomposables sur T x LSi/e C, ona d(f) e C ® C et C (g) C est un sous-
espace de F (S) F; ainsi d(f) peut être interprétée comme une fonction sur
T x T. On a:

(3) rf(/)(Yi, y2) /(Y1Y2) si Yi, Y2 e r
(Cela ne fait que traduire la formule (1) du n° précédent.)

(iv) C contient 1, et est stable par le produit: cela résulte de (ii).

(v) Les structures de cogèbre et d'algèbre de C sont compatibles entre

elles, i.e. elles font de C une bigèbre. Cette bigèbre vérifie les axiomes du

n° 3.1. (L'axiome (i) dit que f^ d{f) doit être un morphisme d'algèbres;
c'est le cas. Les autres axiomes sont encore plus évidents.)

(vi) La bigèbre C possède une inversion i donnée par

(4) /(/)(Y) /(Y-1) •

(Il faut vérifier les conditions (a) et (b) du n° 3.1. La condition (a) est

évidemment satisfaite. Pour (b), soit / e C et écrivons d(f) sous la forme

S ga <8) K. On a
a

(lc ® 0 d(f))I ga ® i(ha)

et l'on doit voir que £ ga-i{ha) e(/)• L Or, si y e T, on a

lga(y)i(ha)(y) Hga(y)ha(y-1) d(f) (y,y~l)
f(y.y~l) f(i) e(f),

d'où la formule voulue.)

(vii) Soit G Spec(C) le schéma en groupes attaché à C. Tout élément

Y e T définit un morphisme f^f(y) de C dans K, donc un élément du

groupe G{K) des points de G à valeurs dans K. L'application T - G(K) ainsi

définie est un Homomorphismen cela résulte de la définition de la loi de

composition de G{K).
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(viii) D'après le n° 4.1, tout T-module à droite E de rang fini est muni

canoniquement d'une structure de C-comodule à gauche de rang fini (et

inversement). Plus précisément, si (Vi)ieI est une base de E, et si l'on a

(5) vty £ Cjj(y)Vj,avec e
jel

le coproduit de E est donné par:

(6) dE(vi) £ ® Vj
jsJ

(ix) La correspondance définie ci-dessus entre T-modules à droite de rang
fini et C-comodules à gauche de rang fini est compatible avec les opérations

«produit tensoriel» et «contragrédiente»; cela résulte de ce qui a été dit au
n° 3.2, combiné avec (vii) ci-dessus.

Remarque. On peut caractériser G Spec(C) par la propriété universelle
suivante: tout homomorphisme de T dans le groupe H{K) des ^-points d'un
schéma en groupe affine H se prolonge de manière unique en un morphisme
G -> H. Le foncteur r ^ G est donc adjoint du foncteur H(K).

4.3. L'enveloppe d'un groupe relativement à une catégorie de
REPRÉSENTATIONS

On conserve les notations du numéro précédent.

Définition 1. Soit L une sous-catégorie pleine de la catégorie des
T-modules à gauche de rang fini. On dit que L est saturée si L vérifie les
conditions suivantes:

a) Si E e L et si E est isomorphe, soit à un quotient de E, soit à

un sous-objet de E, on a F e L.
b) L est stable par somme directe finie, produit tensoriel et

contragrédiente.

c) La représentation unité (de module K) appartient à L. (Bien
entendu, on a une notion analogue pour les T-modules à droite.)

Théorème 1. Si L est saturée, il existe une sous-bigèbre CL de
C(T) et une seule telle que L soit la catégorie des CL-comodules à droite
de rang fini. La bigèbre CL contient l'élément 1, vérifie les axiomes du
n° 3.1, et est stable par l'inversion i.

Cela résulte des props. 2 et 3 du n° 3.3.
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Définition 2. Le schéma GL Spec(CL) est appelé l'enveloppe de r
relativement à la catégorie saturée L.

Les propriétés suivantes de GL résultent de sa définition et de ce qui a été

démontré dans les paragraphes précédents:

a) Gl est un quotient du schéma en groupes G défini au n° précédent.

b) On a un homomorphisme canonique T -> GL(K). De plus, tout sous-
schéma fermé de GL contenant l'image de T est égal à GL (cela exprime

simplement le fait que les éléments de CL sont des fonctions sur T). En

particulier, l'image de T dans GL(K) est dense pour la topologie de Zariski.

c) Le schéma GL est absolument réduit.

d) La bigèbre CL est réunion des cogèbres CE attachées aux éléments E
de L.

e) Si E e L, soit GE l'image de la représentation p: GL -> GLE attachée

à E (cf. n° 3.5). Le groupe GE est l'adhérence (pour la topologie de Zariski)
de l'image de T dans GL^CK) Aut(is).

f) Soient EUE2 e L. Pour qu'il existe un morphisme GEl GEl tel que
le diagramme

r
Ni

GEl(K) - GEl(K)

soit commutatif, il faut et il suffit que E2 soit isomorphe à un quotient d'une
V

sous-représentation d'une somme directe de représentations 0 n(Ei © E{).
L'homomorphisme GEl -> GEl est alors unique.

g) On a G lim. Gi? (vis-à-vis des morphismes définis ci-dessus).

h) Soit Ki e AlgK et soit vKl le foncteur de L dans Mod^, défini

par Ki 0 E. Il y a une bijection canonique (cf. n° 3.4) du groupe

Gl(Ki) sur le groupe des automorphismes du foncteur vKl commutant au

produit tensoriel et triviaux sur le module unité K.

Remarque. La détermination explicite de GL (pour T et L donnés) est

souvent un problème non trivial. On en verra quelques exemples au §5 (voir
aussi les exercices du §4).

Exemples

a) On peut prendre pour L la catégorie de toutes les représentations
linéaires de T; le groupe GL est alors le groupe G du numéro précédent.
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b) Supposons que K soit un corps topologique (resp. un corps valué

complet non discret) et que F soit muni d'une structure de groupe topologique

(resp. de groupe de Lie sur K). On peut prendre pour L la catégorie des

représentations continues (resp. K-analytiques) de rang fini. Une fonction

f e C appartient à la bigèbre Cl correspondante si et seulement si elle est

continue (resp. analytique): cela se vérifie sans difficulté. Le schéma GL est

appelé simplement l'enveloppe du groupe topologique F (resp. du groupe de

Lie T). On peut le caractériser par la propriété universelle suivante: si H est

un groupe algébrique linéaire, tout homomorphisme continu (resp. analytique)
de T dans le groupe topologique (resp. de Lie) H(K) se prolonge de façon

unique en un morphisme de GL dans H. Cela résulte simplement de la

description de CL donnée ci-dessus.

On notera que, même lorsque F est un groupe de Lie connexe de dimension

finie, son enveloppe n'est pas en général un groupe algébrique (i.e. GL ne

possède en général pas de module fidèle, cf. exercice 1).

c) Soit k un corps complet pour une valuation discrète; on suppose k
d'inégale caractéristique et de corps résiduel algébriquement clos. Soit k une
clôture algébrique de k et soit F Gal(k/k). Prenons pour K le corps Qp

(p étant la caractéristique résiduelle de k), et pour L la catégorie des

(^-représentations de F qui ont une «décomposition de Hodge» au sens de

Tate (Driebergen). La catégorie L est saturée. Le groupe GL correspondant
est fort intéressant [du moins pour le rédacteur — les auditeurs du Collège,
qui l'ont subi pendant trois mois, sont peut-être d'un avis différent].

§5. Groupes compacts et groupes complexes

Dans ce paragraphe, le corps de base est R ou C.

5.1. Algébricité des groupes compacts

Proposition 1. Soit K un groupe compact, opérant linéairement et
continûment sur un espace vectoriel réel V de dimension finie. Toute orbite
de K dans V est fermée pour la topologie de Zariski de V (relativement
à R).

Soit x e V, Qt soit y un point de V n'appartenant pas à l'orbite Kx de x.
Il nous faut construire une fonction polynomiale P sur V qui soit nulle
sur Kx et non nulle en y. L'existence d'une telle fonction résulte du lemme plus
précis suivant:
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Lemme 1. Il existe une fonction polynomiale P sur V qui prend les
valeurs 0 en x et 1 en y et qui est invariante par K.

Puisque Kx et Ky sont fermés et disjoints, il existe une fonction continue
réelle / sur F qui vaut 0 sur Kx et 1 sur Ky. Comme les fonctions polynomiales
sont denses dans les fonctions continues (pour la topologie de la convergence
compacte), il existe une fonction polynomiale F sur V qui est ^ 1/3 sur Kx
et ^2/3 sur Ky. Soit dk la mesure de Haar de K, normalisée de telle sorte

que sa masse totale soit 1. La fonction F' définie par

F'(u) |

est une fonction polynomiale invariante par K; si a (resp. b) désigne la valeur
de F' sur l'orbite Kx (resp. Ky), on a a ^ 1/3 et b ^ 2/3, d'où a ^ b. La

F' - a
fonction P répond alors à la question.

b - a

Corollaire. L'image de K dans Aut(F) est fermée pour la

topologie de Zariski de End (F) [et a fortiori pour celle de Aut V)].

En effet, K opère linéairement sur End (F) par

{k, u) k. u si k eK,u e End(V)

et K est l'orbite de lv e End (F); on peut donc appliquer la proposition à

l'espace vectoriel End (F).

Proposition 2. Soit G un groupe algébrique linéaire sur R, et soit
K un sous-groupe compact de G(R). Soit H le plus petit sous-groupe
algébrique réel de G contenant K. On a alors

K H(R)

En effet, on peut plonger G comme sous-groupe algébrique fermé dans un

groupe linéaire GL„; la proposition résulte alors du corollaire ci-dessus.

Remarque. Le groupe H peut aussi être défini comme Y adhérence de K
dans G (pour la topologie de Zariski); il est en effet immédiat que cette
adhérence est un sous-schéma en groupes de G. La bigèbre de H est le quotient
de celle de G par l'idéal formé des fonctions dont la restriction à K est nulle.
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5.2. L'enveloppe d'un groupe compact

Soit K un groupe compact. Considérons la catégorie L des représentations
linéaires continues réelles de rang fini de K. Cette catégorie est saturée

(cf. n° 4.3). Nous noterons G le schéma en groupes correspondant (sur R)
et C sa bigèbre. On dit que G est l'enveloppe de K, cf. n° 4.3, exemple b).
Rappelons (loc. cit.) qu'une fonction réelle / sur K appartient à C si et
seulement si elle vérifie les deux conditions suivantes:

a) Les translatées de / (à gauche, par exemple) engendrent un espace
vectoriel réel de rang fini.

b) / est continue.

Rappelons également que l'on a défini un homomorphisme canonique

K G(R)

Théorème 1. L'homomorphisme K^G(R) est un isomorphisme.

L'injectivité résulte du théorème de Peter-Weyl, que l'on admet.
Pour prouver la surjectivité, écrivons G comme limite projective des

groupes algébriques GE attachés aux éléments de L (cf. n° 4.3). On a
évidemment

G(R) lim. Ge(R)

D'autre part, d'après la prop. 2, tous les homomorphismes

K~*Ge(R)

sont surjectifs. Il en est donc de même (grâce à la compacité) de
K ->• lim. Ge(R), d'où le théorème.

Proposition 3. Soit E e L. Pour que E soit une représentation
fidèle de K (au sens usuel, i.e. le noyau de K -> Aut(E) doit être réduit à
{1}), il faut et il suffit que E soit fidèle comme C-comodule (cf. n° 3.5).

Si E est fidèle comme comodule, G s'identifie à GE, donc K s'identifie à
Ge(R) et il est clair que E est fidèle comme représentation de K.

La réciproque provient de ce qui a été démontré au n° 3.5, combiné avec
le lemme suivant:

Lemme 2 (Burnside). SiE est fidèle, toute représentation irréductible
continue de K est un facteur d'une représentation (g) E, avec ^ 0
convenable.



70 J.-P. SERRE

Soit F une telle représentation, et soit % le caractère d'une composante
irréductible de C (x) F. Si F n'était facteur d'aucune puissance tensorielle de

E, les formules d'orthogonalité des coefficients de représentations
montreraient que % est orthogonal à tous les polynômes en les coefficients cu de

la représentation E. Comme ces polynômes sont denses dans l'espace des

fonctions continues sur K, on aurait % 0, ce qui est absurde.

[Il n'est probablement pas nécessaire d'utiliser les relations
d'orthogonalité. Peu importe.]

Remarque. L'analogue du lemme 2 dans le cas complexe est vrai, à
n n v

condition de remplacer ® E par (g) {E © E). La démonstration est

essentiellement la même. [Dans le cas réel, l'existence d'une forme quadratique non
V

dégénérée invariante montre que E est isomorphe à E; c'est pour cela que
V

l'on a pu se débarrasser de E.]

Corollaire. Lorsque E est fidèle, l'enveloppe de K s'identifie au

groupe Ge

Cela ne fait que reformuler la proposition.

Proposition 4. Pour que G soit algébrique, il faut et il suffit que K
soit un groupe de Lie.

Si K est un groupe de Lie, le théorème de Peter-Weyl montre qu'il admet

une représentation fidèle E; on a alors G GE d'après le corollaire ci-dessus,

et G est donc algébrique. Inversement, si G est algébrique, il est clair que

K G(R) est un groupe de Lie.

Définition 1. Un groupe algébrique linéaire réel H est dit anisotrope

s'il vérifie les deux conditions suivantes:

a) H(R) est compact.

b) H(R) est dense pour la topologie de Zariski de H.

(Comme H(R) contient un voisinage de 1 dans H, la condition b) équivaut à

la suivante:

b') Toute composante connexe (au sens algébrique) de H contient un

point réel.

En particulier, b) est vérifiée si H est connexe.)

Exemples

1) Un groupe semi-simple connexe est anisotrope si et seulement si la

forme de Killing de son algèbre de Lie est négative.
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2) Un groupe de type multiplicatif (non nécessairement connexe) est

anisotrope si et seulement si tout homomorphisme de ce groupe dans le groupe

multiplicatif Gm est trivial ou d'ordre 2. (La conjugaison complexe opère

donc par x ^ X"1 sur le groupe dual.)

Proposition 5. Soit H un groupe algébrique linéaire réel, et soit K
un sous-groupe compact de H(R) dense pour la topologie de Zariski. Alors

H est anisotrope, on a K H{R) et H s'identifie à l'enveloppe de K.

Le fait que H soit l'enveloppe de K résulte du corollaire à la prop. 3.

On en déduit que K H(R), donc que H est anisotrope.

Corollaire. Soit H' un groupe algébrique linéaire réel, et soit cp un

homomorphisme continu de K dans H'{R). Il existe alors un morphisme

f:H-+ H' et un seul qui prolonge cp.

Cela ne fait que traduire le fait que H est l'enveloppe de K.

Remarque. Il est essentiel de supposer que H' est linéaire (prendre

pour K un cercle, et pour H' une courbe elliptique!).

Proposition 6. Le Joncteur «enveloppe» est une équivalence de la

catégorie des groupes de Lie compacts sur celle des groupes algébriques

linéaires réels anisotropes.

C'est clair.

Remarques

1) Le foncteur «enveloppe» jouit des propriétés explicitées au n° 4.3.

En particulier, les éléments de G(R) K peuvent être interprétés comme les

automorphismes du foncteur «espace vectoriel sous-jacent» commutant au

produit tensoriel et triviaux pour le module trivial R. [Ce n'est pas tout à fait
le théorème de dualité de Tannaka, car ce dernier est relatif à des représentations

complexes unitaires, et à des automorphismes unitaires. Il devrait y
avoir moyen de passer de l'un à l'autre. Au concours!]

2) Si K est un groupe de Lie compact, il n'y a pas lieu de distinguer entre

son enveloppe en tant que groupe topologique, ou en tant que groupe de Lie
réel, puisque toute représentation linéaire continue d'un groupe de Lie réel est

analytique. En particulier, les éléments de la bigèbre de K sont des fonctions
analytiques sur K.
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5.3. L'enveloppe complexe d'un groupe compact

Soit K un groupe compact. Soit Lc la catégorie des représentations
linéaires complexes continues de rang fini de K. Cette catégorie est saturée (le

corps de base étant maintenant C). Nous noterons G/c et C/c le schéma en

groupes et la bigèbre correspondants, et nous dirons que G/c est l'enveloppe
complexe de K. D'après le n° 4.3, une fonction complexe / sur K appartient
à C/c si et seulement si elle vérifie les conditions suivantes:

a') Les translatées de / engendrent un espace vectoriel de rang fini.

b') / est continue.

En comparant avec les conditions a) et b) du n° 5.2, on voit que cela signifie

que la partie réelle et la partie imaginaire de / appartiennent à la bigèbre C
de G. On a donc

C/c C (x)R C

et le groupe G/c est le schéma en groupes déduit de G par extension des

scalaires de R à C. En particulier, le groupe G/c(C) de ses points
complexes peut être identifié à G(C).

Noter que la conjugaison complexe définit une involution g ^ g de G(C),
dont l'ensemble des invariants est G(R) K. Plus précisément:

Théorème 2. Supposons que K soit un groupe de Lie compact, et

soit i son algèbre de Lie. Alors g ^ g est une involution de Cartan forte
(cf. réd. n° 517) du groupe de Lie G(C). Les facteurs de la décomposition
de Cartan correspondante sont K et P exp (/{), de sorte que
G(C) K.P.

Démonstration

a) On va d'abord vérifier le th. 2 dans le cas particulier du groupe
orthogonal Gx 0„. On a Gi(R) Ow(R), Gi(C) 0„(C), et l'on sait que

g^> g est une décomposition de Cartan forte de 0„(C) dont l'ensemble des

invariants est Kx 0„(R). Cette décomposition montre en même temps que

Ki est dense dans 0„(C) pour la topologie de Zariski, donc que On est l'enveloppe

de Ki.
b) Passons au cas général. On choisit un plongement de K dans un groupe

orthogonal Kx On(R); l'enveloppe G de K s'identifie alors à un sous-

groupe algébrique de 0„, à savoir Vadhérence de K (pour la topologie de

Zariski). Le groupe G(C) est donc un sous-groupe de Gi(C), stable par
l'involution de Cartan considérée. Comme c'est un sous-groupe «de type
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algébrique», il en résulte (cf. réd. 517, p. 48, prop. 3) que la restriction de

g g à ce sous-groupe est bien une décomposition de Cartan forte. On

sait déjà que le sous-groupe de ses invariants est K. D'autre part, l'algèbre de

Lie de G(C) est C (x) f, et l'automorphisme de C (x) f induit par g ^ g est la

conjugaison complexe; on en déduit que le facteur P correspondant est bien

exp(/f), c.q.f.d.

Remarques

1) Lorsque K est un groupe compact quelconque, on peut l'écrire comme

limite projective de groupes de Lie compacts Kai et l'on a G(C) lim Ga(C),

avec des notations évidentes. D'après le th. 2, chaque Ga(C) a une décomposition

de Cartan Ka.Pa, avec Pa exp(/fa). Finalement, on obtient une

décomposition de G(C) sous la forme G(C) K. exp(zf), en notant î la limite

projective des fa.
[Cette décomposition ne semble présenter aucun intérêt en dehors du cas

où K est un groupe de Lie. Noter que G(C) n'est même pas localement

compact, si dim (AT) oo.]

2) A la place du groupe 0„(R), on aurait pu utiliser le groupe unitaire

U„(C), plus traditionnel. Toutefois, il aurait fallu expliquer comment on
considère U„ comme un groupe algébrique sur R, et pourquoi Uw/C s'identifie
à GL„/C.

Théorème 3. Les hypothèses étant celles du th. 2, soit X un groupe
de Lie complexe, et soit f un homomorphisme continu de K dans X.
Il existe alors un homomorphisme F: G(C) - X de groupes de Lie
complexes, et un seul, qui prolonge f.

Soit Kc le groupe de Lie complexifié de K, au sens de la rédaction 515,

§6, n° 10 [il faut modifier la rédaction en question, car elle suppose, bien

inutilement, que le groupe de Lie réel dont on part est connexe]. On a un
homomorphisme canonique n: Kc-+ G(C), et le th. 3 équivaut à dire que n
est un isomorphisme.

Il est clair en tout cas que n est surjectif; d'autre part, on sait (loc. cit.)
que l'algèbre de Lie de Kc est engendrée sur C par f; puisque celle de G(C)
est f (g) C, on en conclut que n est un revêtement. Ce revêtement admet une
section canonique G(C) K.P -* Kc définie par x. exp(zï) x' exp(zY')
où x désigne un élément de K, x' son image par K -» Kc, t désigne un élément
de il et t' son image par l'application tangente à K-+ Kc. L'image de cette
section est K' .P', avec des notations évidentes; c'est une réunion de

composantes connexes de Kc. De plus, c'est un sous-groupe en vertu du
lemme suivant:
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Lemme 3. Soit A un groupe topologique, soit B un sous-groupe
de A, et soit C la réunion des composantes connexes de A qui
rencontrent B. Alors C est un sous-groupe de A.

Si x, y e C, il existe des parties connexes X, Y de A qui rencontrent B et

sont telles que x e X, y e Y. Alors X.Y~l est une partie connexe de A
rencontrant B et contenant xy ~1

; on a donc xy ~1 e C, ce qui prouve bien

que C est un sous-groupe.

Le théorème 3 est maintenant évident. En effet, on vient de voir que K'. P'
est un sous-groupe ouvert de Kc\ comme il contient K\ il est nécessairement

égal à Kc et la projection n est bien un isomorphisme.

Exemple. Prenons pour K le cercle Si, de sorte que G(C) C*. Soit H
un groupe de Lie complexe compact connexe de dimension 1 [d'aucuns
appellent ça une courbe elliptique] ; en tant que groupe de Lie réel, H est un
tore de dimension 2. Choisissons un plongement / de S2 dans H. D'après le

th. 3, / se prolonge en un homomorphisme F: C* H. Il est immédiat

que F est un revêtement, et que son noyau est formé des puissances d'un
élément q e C*, avec | q | < 1; on peut donc identifier H à C*/gz [Täte
devrait être content].

Si K est un groupe de Lie compact, il est clair que son enveloppe G est

un groupe réductif (puisque toutes ses représentations linéaires sont semi-

simples), donc G/c est un groupe réductif complexe. Inversement:

Théorème 4. Soit H un groupe algébrique linéaire complexe réductif,
et soit K un sous-groupe compact maximal de H(C). L'enveloppe
complexe de K s'identifie à H.

Soit ïj l'algèbre de Lie de H, et soit celle de K. On va d'abord prouver
que t ® it, et qu'il existe une décomposition de Cartan de H{C) dont les

facteurs sont K et exp(/f).
Il suffit de le faire lorsque H est connexe, puis (quitte à passer à un

revêtement) lorsque H est, soit un tore, soit un groupe semi-simple. Le premier
cas est trivial. Le second a été traité dans la rédaction 517, § 3 (en se ramenant

au cas adjoint et en utilisant l'existence d'une forme réelle de ï) dont la forme
de Killing est négative).

Ceci étant, si G est l'enveloppe complexe de K, il est clair que le morphisme

canonique G H donne lieu à un homomorphisme G(C) -» H{C) qui est un
isomorphisme. C'est donc un isomorphisme.
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Remarque. Le th. 4 équivaut à dire que Y enveloppe de K est une «forme

réelle» anisotrope de H. Il y a donc correspondance bijective entre:

— sous-groupes compacts maximaux de H{C),

— formes réelles anisotropes de H.

En particulier, ces dernières sont conjuguées entre elles par les éléments

de H(C) (et même par ceux de H°{C), H° désignant la composante neutre

de H).

5.4. Retour aux groupes anisotropes

Proposition 7. Soit G un groupe algébrique linéaire réel anisotrope,

et soit H un sous-groupe algébrique de G. Soit V G/H l'espace

homogène correspondant (au sens algébrique). Alors:

a) H est anisotrope.

b) L'application canonique G(R) -> L(R) est surjective (de sorte qu'on
peut identifier V(R) à G(R)/if(R)).

c) Si H est distingué, le groupe quotient G/H est anisotrope.

La conjugaison de Cartan g h» g du th. 2 laisse évidemment stable

le sous-groupe H{C) de G(C). Comme H(C) est «de type algébrique», on en

conclut que H(C) admet lui-même une décomposition de Cartan K.P, où

K H(C) n G(R) H(R). Mais alors il est clair que l'adhérence de K pour
la topologie de Zariski de H est H tout entier. Cela montre que H est

anisotrope, d'où a).

Soit maintenant v e L(R); soit g e G(C) un élément dont l'image dans

V(C) G(C)/H(C) est v. On a g g mod H{C). Soit K{ .Px la décomposition

de Cartan de G(C) utilisée plus haut, et écrivons g sous la forme
g kiPi, avec kx e Ku px e P{. L'hypothèse g g mod H{C) signifie qu'il
existe k e K et p e P tels que g gkp, i.e. kxpx kxp^lkp, d'où p\ kp,
ce qui entraîne k 1, p p\. Comme P est stable par extraction de racines
carrées, on a a e P. On en conclut que g kx mod H(C), donc que v est

l'image de l'élément k{ e G(R), ce qui prouve b).
Enfin, si H est distingué, il est clair que l'image de Kx dans (G/H) (R) est

dense pour la topologie de Zariski de G/H; or cette image est un compact,
d'où etc.

[Le rédacteur ne voit pas comment démontrer que H est anisotrope sans
utiliser les décompositions de Cartan — sauf, bien sûr, dans le cas où H est

connexe, qui est trivial.]
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5.5. Groupes de Lie complexes réductifs
Théorème 5. Soient H un groupe de Lie complexe, H° sa composante

neutre et jf) son algèbre de Lie. Les conditions suivantes sont
équivalentes:

(i) H/H° est fini; b est réductive; la composante neutre du centre
de H° est isomorphe à un produit de groupes C*.

(ii) H/H° est fini; toute représentation linéaire complexe de H est

semi-simple; il existe une telle représentation qui est fidèle.

(iii) H/H° est fini; si K est un sous-groupe compact maximal de H,
et f son algèbre de Lie, on a b f © if.

(iv) Il existe un groupe de Lie compact K tel que H soit isomorphe
au complexifié de K.

(v) Il existe un groupe algébrique linéaire sur C qui est réductif, et dont
le groupe des points est isomorphe à H (comme groupe de Lie complexe).

Démonstration. L'équivalence (iv) & (v) résulte des ths. 3 et 4. • Le

fait que (iv) =» (iii) résulte de la décomposition de Cartan de H. Inversement,

supposons (iii) vérifiée, soit G l'enveloppe de K, et soit G(C) le complexifié
de K. L'injection K ^ H se prolonge en un morphisme / : G(C) H de

groupes de Lie complexes. Vu que b f © zf, f est un isomorphisme local.
De plus, K est un sous-groupe compact maximal à la fois de G(C) et de H
et la restriction de f ä K est l'identité (modulo les identifications faites). Cela

entraîne que / est un isomorphisme, en vertu du lemme suivant:

Lemme 4. Soit f : A -> B un homomorphisme de groupes de Lie réels.

On suppose:

a) que f est un isomorphisme local;

b) que A et B ont un nombre fini de composantes connexes;

c) qu'il existe un sous-groupe compact maximal KA (resp. KB) de A
(resp. de B) tel que la restriction de f à KA soit un isomorphisme de

Ka sur Kb

Alors f est un isomorphisme.

Démonstration du lemme 4. On sait que B possède une décomposition

multiexponentielle B KB. exp(pi) ••• exp(pn), où les pt sont des sous-

espaces vectoriels de l'algèbre de Lie b de B. Cela permet de définir une section

h: B A par

£. exp^j)... exp(6j ^ k'. exp(^)... exp(^)
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où k' désigne l'image réciproque de k dans KA et t[,..., t'n les éléments de

l'algèbre de Lie de A relevant tu ...,4. L'image de h est une réunion de

composantes connexes de A; comme elle contient KJ4, c'est A tout entier;

d'où le lemme.

On a donc prouvé l'équivalence (iii) & (iv).

L'implication (v) => (i) est immédiate: on sait en effet que tout groupe

réductif connexe est extension d'un groupe semi-simple par un groupe de type

multiplicatif. Inversement, montrons que (i) => (iii) (ce qui prouvera que (i)

est équivalent à (iii), (iv), (v)). On peut supposer H connexe. Si Z désigne la

composante neutre du centre de H, et S son groupe dérivé, S n Z est un groupe

discret, qui est le centre de S. Or on a:

Lemme 5. Le centre d'un groupe de Lie complexe, connexe, d'algèbre de

Lie semi-simple, est fini.
Il suffit de voir que le groupe fondamental du groupe adjoint est fini. Or

le groupe adjoint admet une décomposition de Cartan K.P, avec K compact
semi-simple connexe (cf. rédaction numéro 517); son groupe fondamental est

le même que celui de K, et ce dernier est fini d'après un théorème bien connu
d'Int. (chap. VII, §3, prop. 5).

Ceci étant, on voit que 5 n Z est fini, donc que H admet pour revêtement

fini le produit S x Z. Pour vérifier que H jouit de la propriété (iii), il suffit
de le faire pour son revêtement S x Z, c'est-à-dire pour S et pour Z. Le cas

de Z est trivial (puisqu'on l'a supposé isomorphe à (C*)n); pour S, on

remarque que, d'après le lemme 5, son centre est fini, et l'on est ramené au
cas du groupe adjoint; mais ce dernier est évidemment «algébrique»,
i.e. vérifie (v), donc aussi (iii).

Reste à démontrer que (ii) est équivalente aux quatre autres propriétés. Tout
d'abord, on a (iv) => (ii); en effet, si H est le complexifié de K, et si E est une
représentation linéaire complexe de H, les sous-espaces de E stables par K le

sont aussi par H, ce qui montre que E est semi-simple; de même, le fait que
K ait une représentation linéaire fidèle montre que H en possède une.

Enfin, supposons (ii) vérifiée. L'existence d'une représentation semi-simple
et fidèle de H montre que f) est réductive (car la représentation de f) correspondante

est aussi semi-simple et fidèle). D'autre part, H° vérifie aussi (ii) (le
seul point non évident est que toute représentation linéaire p de H° soit semi-
simple; cela se voit en remarquant que la représentation linéaire induite (au
sens Frobenius!) de p est semi-simple). Si Z désigne la composante neutre
du centre de H et S le groupe dérivé de H, on voit comme ci-dessus que S n Z
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est un groupe fini F. On a un homomorphisme surjectif H-* Z/F\ le groupe
Z/F est donc un groupe commutatif, connexe, dont toutes les représentations
linéaires sont semi-simples; de plus, Z possède une représentation linéaire
fidèle. Il en résulte facilement (cf. exercice 5) que Z est isomorphe à (C*)".
On a donc (ii) => (i), ce qui achève la démonstration.

[Cette démonstration n'est en fait qu'une simple vérification: tout le travail
sérieux a déjà été fait. On devrait pouvoir la présenter plus simplement.]

Définition 2. Un groupe de Lie complexe qui vérifie les propriétés
équivalentes du th. 5 est dit réductif

Théorème 6. Soit H un groupe de Lie complexe réductif. Soit G

son enveloppe complexe (en tant que groupe de Lie complexe, cf. n° 4.3).
Alors G est un groupe algébrique linéaire complexe réductif (au sens

algébrique) et Vapplication canonique HG(C) est un isomorphisme.

Soit K un sous-groupe compact maximal de H; puisque H est le complexifié
de K, les représentations linéaires complexes (holomorphes) de H
correspondent bijectivement (par restriction) à celles de K. Il s'ensuit que le

groupe G en question n'est autre que l'enveloppe complexe GK/C de K, d'où
le théorème.

Corollaire 1. Soient Gx et G2 deux groupes algébriques linéaires

complexes, et soit f: GX{C) -* G2(C) un homomorphisme de groupes de

Lie complexes. Si Gx est réductif f est «algébrique» (i.e. induit par un
morphisme Gx -* G2).

Cela ne fait que traduire le th. 6.

Corollaire 2. Le fondeur «enveloppe» est une équivalence de la

catégorie des groupes de Lie complexes réductifs sur celle des groupes
algébriques linéaires réductifs.

C'est clair.

Remarque. Soit K un sous-groupe compact maximal de G(C), où G est

algébrique linéaire réductif sur C. On peut résumer ce qui précède ainsi:

l'algèbre affine de G s'identifie à l'algèbre des fonctions holomorphes sur G(C)
dont les translatées engendrent un espace vectoriel de dimension finie; par
restriction à K, cette algèbre s'applique isomorphiquement sur l'algèbre des

fonctions continues complexes sur K dont les translatées engendrent un espace

vectoriel de dimension finie.
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[On obtient ainsi des bigèbres sur C; à ces bigèbres correspondent des

schémas en groupes; à ces schémas en groupes correspondent des groupes de

Lie complexes; à ces groupes... Voyez, voyez, la machine tourner!]

Exercices

§1

1) Soit E un Z-module projectif de type fini. On identifie End (2s) à

E 0 Ef; on note / l'élément de E 0 E' correspondant à \E, et son image

dans E' ® E.
On munit E 0 E' End (is) de la structure de cogèbre opposée à celle

définie au n° 1.1.

a) Si x a 0 a' e E 0 2s", montrer que d(x) a 0 lI 0 a'.

b) On définit une application dE: E -+ End (is) ®E E®E'®E par
a a (x) '/. Montrer que cette application définit sur E une structure de

comodule à gauche sur End(£").

c) On identifie End(jE) (x) End(iT) à End(2i (x) E) par l'application

(u,v)^> u ® v. D'autre part, si on écrit End(is (x) E) sous la forme
E (x) E 0 E' (x) E" la permutation des deux facteurs E' définit un auto-
morphisme a de End (is (x) is). Montrer que l'on a

c/(w) o(u 0 1^) si u e End(is)

d) Soit (Vj) une base de E, et soit {Etj v'j 0 i»/) la base correspondante
de End^). Montrer que

d(E,j) Y,Eik®EkJ.
k

e) Justifier la Remarque 2 du n° 1.2.

2) Soit C une cogèbre plate, et soit E un comodule sur C.

a) Soit V un /f-module tel que E soit isomorphe (comme module) à un
quotient de E. Montrer qu'il existe un sous-comodule de C F tel que E
soit isomorphe (comme comodule) à un quotient de (Utiliser le morphisme
C0 V-+ C® Eetle fait que E est isomorphe à un sous-comodule de C ® E.)
Montrer que, si K est noethérien, et E de type fini, on peut choisir de type
fini.
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b) On suppose que K est un anneau de Dedekind. Montrer que tout
comodule E de type fini est quotient d'un comodule F qui est projectif de type
fini. (Utiliser a) en prenant pour V un module libre de sorte que F soit sans

torsion.)

§2

1) Soit x e C tel que dE{x) x® x et e(x) 1. On note Kx le

module K muni de la structure de comodule définie par

y^ x®y.
Prouver l'équivalence des propriétés suivantes:

a) Kx est le seul objet simple de Comfc (à isomorphisme près).

b) Toute sous-cogèbre de C non réduite à 0 contient x.

c) Le comodule C est extension essentielle du sous-comodule Kx (i.e. tout
sous-comodule de C différent de 0 contient x).

d) L'algèbre profinie A duale de C est un anneau local d'idéal maximal
le noyau de l'homomorphisme a ^ < x, a > de A dans K.

[Noter que c) signifie ceci: le comodule C est l'enveloppe injective du
comodule simple Kx,]

§3

1) Avec les notations du n° 3.4, montrer sans utiliser la prop. 4

que la formule (iii) est conséquence des formules (i) et (ii).

2) Les notations étant celles du n° 3.4, on suppose K parfait. Soit g
un automorphisme du foncteur v. Pour tout objet E de Com^ soit sE

(resp. uE) la composante semi-simple (resp. unipotente) de g(E). Montrer que
E*-* sE et E^ue sont des automorphismes du foncteur u, Si g vérifie
les relations (i) et (ii), montrer qu'il en est de même pour s et u. Déduire de

là la décomposition des éléments de G{K) en produits d'éléments semi-simples

et unipotents commutant entre eux (dans le cas où G est un schéma en

groupes).
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Utiliser le même procédé pour obtenir la décomposition des éléments de

l'algèbre de Lie de G en sommes d'éléments semi-simples et nilpotents

commutant entre eux.

[Cette décomposition n'a en fait rien à voir avec les bigèbres. On aurait

pu la donner au §2.]

3) On suppose que G Spec(C) est un schéma en groupes. Prouver

l'équivalence des propriétés suivantes:

a) Tout G-module simple est isomorphe au G-module trival K.

b) G est limite projective de groupes algébriques linéaires unipotents.

c) Si E e Comfc> Ki e Alg*, et u e GE(KX), l'élément u est unipotent.

4) On suppose K de caractéristique zéro. Montrer que la catégorie des

G-modules semi-simples vérifie les conditions du corollaire à la prop. 3,

donc correspond à un quotient H de G. Montrer que l'on peut caractériser H
comme le plus grand quotient de G qui soit réductif (i.e. limite projective de

groupes algébriques linéaires réductifs, au sens usuel).

§4

1) On prend K C. Le groupe additif T C est considéré comme

un groupe de Lie complexe. Soit G son enveloppe, et soit C la bigèbre
correspondante.

a) Montrer qu'une fonction f(z) sur T appartient à C si et seulement si

c'est une exponentielle-polynôme, i.e. si elle est combinaison linéaire de

fonctions de la forme zneXz, avec n e N, X e C.

b) Montrer que C est produit tensoriel de la bigèbre formée des polynômes,
et de la bigèbre formée des combinaisons linéaires d'exponentielles. Interpréter
cette décomposition comme une décomposition de l'enveloppe G en produit
du groupe additif Ga et d'un groupe de type multiplicatif M dual du groupe
abélien C. En particulier, G n'est pas algébrique.

2) Comment faut-il modifier l'exercice précédent lorsque K R et
T R? (La partie «tore» de G n'est plus déployée; son dual est C, muni de
la conjugaison complexe.)

(Dans les deux exercices ci-après, on se permet d'identifier un groupe
profini T à son enveloppe relativement à la catégorie des T-modules à noyau
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ouvert. Cela revient à identifier un groupe fini au groupe algébrique
«constant» de dimension 0 qui lui est associé.)

3) Soit K et soit H un groupe algébrique semi-simple simplement
connexe sur K. Soit r un sous-groupe ouvert compact du groupe H(QP).
Montrer que l'enveloppe du groupe topologique T est H x T. (Le second

facteur est identifié au schéma en groupes correspondant, cf. ci-dessus.)

4) Soient K Q et T SLn(Z), n ^ 3. On prend pour L la catégorie de

toutes les représentations linéaires de T sur Q de rang fini. Montrer que
l'enveloppe de T est SL„ x J] SLw(Zp), le second facteur étant identifié à un

p
schéma en groupes comme on l'a expliqué ci-dessus. (Utiliser le th. 16.2,

p. 497, des Publ. IHES, 1967, combiné avec le fait que tout sous-groupe
d'indice fini de T contient un «groupe de congruence».)

5) Soit K un corps complet pour une valuation discrète u. On note A
(resp. m) l'anneau (resp. l'idéal maximal) de u, et l'on note p la caractéristique
du corps A/m. On suppose p 4 0 et car (AT) 0.

a) Soit x e K*. Supposons qu'il existe un entier d tel que, pour tout n ^ 0,

il existe une extension Kn de K de degré d et un élément y e Kn tel que
ypn x. Montrer que u(x) 0. Montrer que, si x 1 (mod m), on a x 1.

(Se ramener au cas où toutes les racines /^-èmes de x appartiennent au

corps K.)

b) Soit / :K -> GLw(if) un homomorphisme if-analytique. Montrer que /
est «algébrique», i.e. qu'il existe une matrice nilpotente u telle que

f(t) exp(ta) pour tout t e K. (Appliquer a) aux valeurs propres de f(t),
avec d n; en conclure que f(t) est unipotent pour tout t.)

c) Déduire de b) que l'enveloppe du groupe de Lie K est le groupe additif
Ga (relativement à K).

d) Etendre b) et c) aux groupes algébriques unipotents sur K (écrire les

éléments de ces groupes comme produits de groupes à un paramètre). Même

chose pour les groupes semi-simples déployés. [Il est probable que le résultat

reste vrai pour les groupes semi-simples n'ayant aucun facteur simple

anisotrope.]

e) Montrer que les résultats de b) et c) ne s'étendent pas aux groupes de

type multiplicatif.

6) Soit K un corps localement compact ultramétrique de caractéristique

0 et soit p le groupe des racines de l'unité contenues dans K. Soit S
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le revêtement de SL2(A) défini par C. Moore et T. Kubota; on a une suite

exacte

et S est son propre groupe dérivé. Montrer que toute représentation ^-linéaire

analytique du groupe de Lie S est triviale sur p; en déduire que SL2 est

l'enveloppe de S. (Si G est l'enveloppe de S, remarquer que la suite

SL2 {1}

est exacte (cf. exercice 5). Utiliser ensuite le fait que SL2 est simplement

connexe.)

§5

1) Etendre la prop. 1 au cas d'un groupe compact K opérant continûment

sur un espace vectoriel réel V de dimension finie, chacune des opérations
de K étant polynomiale. (On montrera d'abord, au moyen du théorème de

Baire, que le degré de ces opérations est borné.)

2) Soit H un sous-groupe algébrique réel de GL„. Montrer que H est

anisotrope si et seulement si il existe une forme quadratique positive non
dégénérée sur R" qui est invariante par H.

3) a) Soit G un groupe algébrique linéaire réel, et soit H un sous-groupe
algébrique distingué de G. On suppose que H et G/H sont anisotropes, et que
G/H est connexe. Montrer que G est anisotrope.

b) On prend pour G le groupe des matrices de la forme ] avec
\ a)

(1a2+ b2)21 et pour H le sous-groupe de celles pour lesquelles
a2 + b2 1. Le groupe G/H s'identifie au groupe «constant» {±1}.
Montrer que H et G/H sont anisotropes et que G ne l'est pas.

4) Avec les notations de la prop. 7, montrer que l'injection de F(R)
dans V(C) est une «équivalence d'homotopie». (Il suffit de voir que
7t, (F(R)) - 7t/ V(C))est un isomorphisme pour tout /; utiliser le lemme des

cinq pour se ramener à l'énoncé analogue pour G et H.) [Exercice: donner
explicitement une «rétraction de déformation» de V(C) sur F(R).]

En particulier, la quadrique complexe d'équation E z • 1 a même type
d'homotopie que l'ensemble de ses points réels; énoncer des résultats analogues
pour les variétés de Stiefel, etc.
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5) (Cet exercice pourrait remonter au chapitre III du livre de Lie.)

Soit A un groupe de Lie complexe, commutatif, connexe, d'algèbre de

Lie a; soit A le noyau de exp: a A, de sorte que A s'identifie à a/A.

a) Démontrer l'équivalence de:

ai) L'application canonique C 0 A -> a est injective.

a2) A est isomorphe à un sous-groupe de Lie d'un (C*)".
a3) A est isomorphe à un groupe (C*)^ x Cq.

a4) A possède une représentation linéaire complexe fidèle.

a5) A possède une représentation linéaire complexe fidèle semi-simple

d'image fermée.

b) Démontrer l'équivalence de:

bi) L'application C ® A -> a est surjective.

b2) A est isomorphe à un quotient d'un groupe (C*)".
b3) Aucun facteur direct de A n'est isomorphe à C.

b4) Toute représentation linéaire complexe de A est semi-simple.

c) Démontrer l'équivalence de:

Ci) L'application C 0 A -> a est bijective.

c2) A est isomorphe à un (C*)".

d) Soit F un sous-groupe fini de A, et soit A' A/F. Montrer que A
vérifie les conditions ai) (resp. &;), C/)) si et seulement si A' les vérifie.
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