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250 M. MENDES FRANCE

This observation led me to ask in 1971 [10] whether it was indeed true that

sup 8((a/b)") =

whithout any other assumptions than 1 < b < a, (@, b) = 1. The problem was
solved by Y. Pourchet in an unpublished letter he sent me [14] and by
G. Choquet in a series of Comptes Rendus a 1’Académie des Sciences [2].

THEOREM 1. If a and b are two coprime integers 1 < b < a then

lim §((a/b)") = o .

n-— oo

Choquet’s proof involves dynamical systems. He could only show that the
“‘sup’’ is infinite. Pourchet’s proof is number theoretical and uses the Mahler-
Ridout theorem which strengthens Roth’s famous result on the rational
approximations of algebraic numbers.

It is a pity that Pourchet never published his result. Fortunately
A. van der Poorten gave some details of the proof in [16].

§2. A QUESTION CONCERNING PISOT NUMBERS

Let x > 1 be a real number. Define the set
E(x) = {x" (mod 1) | ne N} C]JO0,1]

Let E’(x) be the derived set i.e. the set of cluster points of E(x). Define
E™ (x) recursively to be the derived set of E»~D(x),n > 1. In [12] Pisot
establishes that if x is a real algebraic number larger that 1 such that
E"”(x) = @ then x is a Pisot number. I ask the following question.

PROBLEM 1. Is it true that if x> 1 s algebraic and if for some
keN(k=2) E®WXx)=C then x isa Pisot number?

A positive answer to this problem implies the weak form of Theorem 1,
namely that the sup is infinite. Indeed, define A, = {0} and for £ > 1

Ay ={Le€(0,1)]8() < 2k}.
Let A,,, Aj,, +-- be the derived sets of A,,. Clearly A;, = Ay _»,

therefore

(k+1) _
ALY = g



r
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Now let x > 1 be a rational number which is not an integer. Suppose

sup 6 (x") < o

n

Then for some k
E(x) C Ay
hence
Ek+D(x) = O .

Assuming a positive answer to Problem 1, we conclude that x is a Pisot
number, i.e. a rational integer. This contradicts the assumption hence

sup 8(x") = oo . QOED

§3. MORE QUESTIONS ON & (x")

H. Heilbronn [7], T. Tonkov [15] and finally J. W. Porter [13] improving
on one another established that as a tends to infinity

1 a 12
— Y §|-]|=—mIn2lna+ 0Q1).
0@ bv<a b 2

(a,b) =1

Independtly, J.D. Dixon [6] showed that for all € >0 and for all
a,b,1 < b < a< x with the exception of at most o(x?) couples, one has

1
—+e

< (Ina)?

a 12
Ol—] — —In2lna
b T2

See H. Daudé’s work for a dual result [5]. These results suggest the second
problem.

PROBLEM 2. Is it true that for all coprime a and b,1 < b < a
1 a\n 12
(1) lim —8||— =—1In2lnbd?
n—-o N b T 2
The limit should indeed be what is stated above and not

12
—In2lna.
TEZ



	§2. A QUESTION CONCERNING PISOT NUMBERS

