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REMARKS AND PROBLEMS
ON FINITE AND PERIODIC CONTINUED FRACTIONS

by Michel MENDES FRANCE

SUMMARY. We present eight problems related to the length of continued
fractions of rational numbers and to the length of the period of quadratic
surds.

§1. A FRUSTRATING QUESTION

Let @ and b be two coprime integers, 1 < b < a. Is it true that the sequence
(a/b)yr,n=0,1,2, - is dense (mod 1)? This very old problem of Pisot
and Vijayaraghavan is still unanswered. Pisot, Vijayaraghavan and
André Weil did however show that there exist infinitely many cluster
points.

Are any one of these cluster points irrational? Even this seems unanswered.
We address a simpler question, but before we must define the depth of a
rational number x: it is simply the length &(x) of the continued fraction of x

x = [co,C1,Ca, ", C5]

where we choose & to be even (cs > 1). For example

1 3
Sth)=0,keZ; 6(—) =2; 5(—) =4,
2 5

Quite obviously 8(a/b) = O(In(b)), 1 < b < a (see [8]).
Suppose that the sequence (a/b)" has an irrational cluster point {
(mod 1). Then some subsequence (a/b)" (mod 1) tends to { hence

8((a/b)ri ) = oo .

KEY. WORDS: Continued fractions, depth, Pisot numbers, Mdbius transformations,
quadratic surds.
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This observation led me to ask in 1971 [10] whether it was indeed true that

sup 8((a/b)") =

whithout any other assumptions than 1 < b < a, (@, b) = 1. The problem was
solved by Y. Pourchet in an unpublished letter he sent me [14] and by
G. Choquet in a series of Comptes Rendus a 1’Académie des Sciences [2].

THEOREM 1. If a and b are two coprime integers 1 < b < a then

lim §((a/b)") = o .

n-— oo

Choquet’s proof involves dynamical systems. He could only show that the
“‘sup’’ is infinite. Pourchet’s proof is number theoretical and uses the Mahler-
Ridout theorem which strengthens Roth’s famous result on the rational
approximations of algebraic numbers.

It is a pity that Pourchet never published his result. Fortunately
A. van der Poorten gave some details of the proof in [16].

§2. A QUESTION CONCERNING PISOT NUMBERS

Let x > 1 be a real number. Define the set
E(x) = {x" (mod 1) | ne N} C]JO0,1]

Let E’(x) be the derived set i.e. the set of cluster points of E(x). Define
E™ (x) recursively to be the derived set of E»~D(x),n > 1. In [12] Pisot
establishes that if x is a real algebraic number larger that 1 such that
E"”(x) = @ then x is a Pisot number. I ask the following question.

PROBLEM 1. Is it true that if x> 1 s algebraic and if for some
keN(k=2) E®WXx)=C then x isa Pisot number?

A positive answer to this problem implies the weak form of Theorem 1,
namely that the sup is infinite. Indeed, define A, = {0} and for £ > 1

Ay ={Le€(0,1)]8() < 2k}.
Let A,,, Aj,, +-- be the derived sets of A,,. Clearly A;, = Ay _»,

therefore

(k+1) _
ALY = g



r
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Now let x > 1 be a rational number which is not an integer. Suppose

sup 6 (x") < o

n

Then for some k
E(x) C Ay
hence
Ek+D(x) = O .

Assuming a positive answer to Problem 1, we conclude that x is a Pisot
number, i.e. a rational integer. This contradicts the assumption hence

sup 8(x") = oo . QOED

§3. MORE QUESTIONS ON & (x")

H. Heilbronn [7], T. Tonkov [15] and finally J. W. Porter [13] improving
on one another established that as a tends to infinity

1 a 12
— Y §|-]|=—mIn2lna+ 0Q1).
0@ bv<a b 2

(a,b) =1

Independtly, J.D. Dixon [6] showed that for all € >0 and for all
a,b,1 < b < a< x with the exception of at most o(x?) couples, one has

1
—+e

< (Ina)?

a 12
Ol—] — —In2lna
b T2

See H. Daudé’s work for a dual result [5]. These results suggest the second
problem.

PROBLEM 2. Is it true that for all coprime a and b,1 < b < a
1 a\n 12
(1) lim —8||— =—1In2lnbd?
n—-o N b T 2
The limit should indeed be what is stated above and not

12
—In2lna.
TEZ
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since it is b, the smallest of the two integers a and b that seems to control the
behavior of (a/b)”. It is also to be noticed that in Dixon’s inequality, the
Ina that appears on the left hand side could well be replaced by Inbd
since for ‘“‘almost all’’ couples a, b, Ina = In b.

Numerical evidence supports equality (1). Based on computer computation,
Chr. Batut and M. Olivier showed that

1 a\” 12
— o= ———ln21nb‘
(G)) -

is less than .02 for n in the range (4000, 5000) and for a =3, b =2
on the one hand and ¢ = 5, b = 2 on the other hand.

§4. RELATED PROBLEMS

My initial (unsuccessful) attempts to prove Theorem 1 were based on the
comparison of &(ax/b) to 8(x). I was hoping that a relationship between both
depths would give by induction some results on & (xa”/b"). This turned out
nonconclusive, yet I did obtain some results which I believe are interesting in
themselves [10].

Let a, b, c,d be coprime integers and let A = I ad — bc | Consider
the Mobius map

ax + b
x— Tx =

cx +d
THEOREM 2.

: 8 (Tx)
lim sup = 0(A)

5(x) > O(X)

where © takes odd integral values. As n increases to infinity ©(n)
behaver like 1In n. More precisely let

1+]/§)1.

2

o= (21n

Then for all integer n > 1
l+olnn<®M0n <21 +alnn) .

® s linked to the depth by the formula

b
®((n) = max 8(—) +1.

1<b<gn n
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Finally

. 8(Tx) 1
lim inf = .
§(x) = o S(X) @(A)

The following table gives the first values of ®

n 1 2 3 4 5 6 7 8 9 10

®(n) 1 3 3 3 5 3 5 5 5 5
Actually Theorem 1 can be improved. There exist two constants
C, = C,(T) and C, = C,(T) such that for all rational x

v 3(x) - C<d(T) <OQ)d(x) + (.

Both inequalities are sharp apart from the exact values of C; and C;.

5. MORE QUESTIONS

To every Mobius map T we associate the interval I(T) = [® ~1(A), ®(A)].

PROBLEM 3. Is it true that for all C e I(T)

there exists a sequence
of rational numbers x, such that

lim 8(x,) = © and

§(Tx,
lim OU*) _ g
n— oo 8(Xn)

PROBLEM 4. Let T, 715, -, T
coprime determinants A, Ay, -+, Ay.
Is it true that for all

be Mobius maps with pairwise

k
€1, Coy oo L e I 1T
i=1
there exists a sequence of rational x,

with strictly increasing depths such
that forall i=1,2, -,k

. O(Tixy)
lim

= (.9
o 8(X,) =

Can k be infinite?

The following result should be mentioned at this point.
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THEOREM 3. There exists a sequence of rational numbers x, Wwith
strictly increasing depths such that for all Mébius maps T
5 (Tx,)
1m =1
n—® 6(xn)

The proof is quite simple. To each irrational
X = [C09 Ci1, C2, ]
we associate the sequence of best approximations

_ P
dn

X = [co, €1, C2s """, Cpl -

Paul Lévy [9] showed that for almost all x

el
12In2

ngqg,~ n

as n goes to infinity (see for example [1] p. 45). In other words, for almost
all x

12In2

2

0 (Xn) ~

Ing, .

Therefore, for almost all x

S(axn + b) 12In2

In(cp, + dg,) .
cx, +d

s
Now p, ~ xq, so that

cpn + dg, ~ (cx + d)q,
In(cp, +dg,) ~Ing, .

Hence for almost all x

)
6(ax

~ &(x,) .
cxn+d) Gen)

By countable intersection, we conclude that for almost all x and for all Mobius
map 1T

O(Tx,) ~ 6(xn) . QED
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PROBLEM 5. Let T be a given Mobius map and let I(T) be the
associated interval. Let { e I(T). To compute the Hausdorff dimension of
those x for which

. O0(Txy)
lim =

n— oo N

C.

Extend this problem to higher dimensions in the spirit of problem 4.

§6. QUADRATIC SURDS

Let x be a real quadratic number. Its continued fraction expansion is
ultimately periodic. Let m(x) be its period. H. Cohen [3], followed by
J. Cusick [4] and Paysant-Leroux [11] studied the action of a Mdbius map on
the period. They established that

, n(Tx)
lim sup = R(A)
n(x) = T(X)
where R(A) is an integer. Furthermore
Anlnn < R(n) < Bnlnn+ 1

for some constants A > 0, B > 0. A simple argument then shows that

) ) t(Tx) 1
lim inf = .
n(x) 2o TU (X) R (A)

PROBLEM 6. Is it true that for all real quadratic irrational x

sup m(x"?) = o ?

n

Define the interval

1
J(A) = |— :
(A) [R(A), R(A)]

PROBLEM 7. Let e J(A). Prove the existence of a sequence of real
quadratic numbers x, with strictly increasing period such that
n(Tx,)

lim =
n-w T(X,)

Extend this result to higher dimensions as in Problem 4.
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PROBLEM 8. Does there exist a sequence x, of quadratic numbers with
strictly increasing period such that for all Méobius map T

. T(Tx,)
lim =

I = TC(X,,)

17?

We believe some of our problems are relatively easy to solve. But quite
obviously Problem 1, 2 and maybe 6 are deep.
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(Recu le 13 avril 1993)

Michel Mendés France

Département de Mathématiques
Université de Bordeaux I
F-33405 Talence, France

ADDED IN PROOF

I.

In a delightful article to appear ‘‘Origins of the Analysis of Algorithms”’,

J. Shallit discusses the early history of 8(x), x € Q.

2.

Recently (summer 1993), G. Grisel (University of Caen, France) managed to

show that for a large class of quadratic irrationals x, n(x7) is indeed unbounded so
that Problem 6 is partially solved.
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