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REMARKS AND PROBLEMS

ON FINITE AND PERIODIC CONTINUED FRACTIONS

by Michel Mendès France

Summary. We present eight problems related to the length of continued

fractions of rational numbers and to the length of the period of quadratic
surds.

Let a and b be two coprime integers, 1 < b < a. Is it true that the sequence

(a/b)n, n 0, 1, 2, • • • is dense (mod 1)? This very old problem of Pisot
and Vijayaraghavan is still unanswered. Pisot, Vijayaraghavan and

André Weil did however show that there exist infinitely many cluster

points.
Are any one of these cluster points irrational? Even this seems unanswered.

We address a simpler question, but before we must define the depth of a

rational number x: it is simply the length 8(x) of the continued fraction of x

Quite obviously b(a/b) 0(ln(£)), 1 ^ b < a (see [8]).
Suppose that the sequence (a/b)n has an irrational cluster point Ç

(mod 1). Then some subsequence (a/b)nJ (mod 1) tends to Ç hence

8((a/b)nJ - oo

Key words: Continued fractions, depth, Pisot numbers, Möbius transformations,
quadratic surds.

§ 1. A FRUSTRATING QUESTION

•Y [C(3
5 C\ Ci, C6]

where we choose 8 to be even (c§ ^ 1). For example
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This observation led me to ask in 1971 [10] whether it was indeed true that

sup 8((a/b)n) oo

n

whithout any other assumptions than 1 < b < a, (a, b) 1. The problem was

solved by Y. Pourchet in an unpublished letter he sent me [14] and by
G. Choquet in a series of Comptes Rendus à l'Académie des Sciences [2].

Theorem 1. If a and b are two coprime integers 1 < b < a then

lim b{(a/b)n) oo

n * co

Choquet's proof involves dynamical systems. He could only show that the

4'sup" is infinite. Pourchet's proof is number theoretical and uses the Mahler-
Ridout theorem which strengthens Roth's famous result on the rational
approximations of algebraic numbers.

It is a pity that Pourchet never published his result. Fortunately
A. van der Poorten gave some details of the proof in [16].

§2. A QUESTION CONCERNING PlSOT NUMBERS

Let x > 1 be a real number. Define the set

E(x) {x" (mod 1) I n e N} C [0, 1]

Let E'(x) be the derived set i.e. the set of cluster points of E(x). Define
E{n)(x) recursively to be the derived set of E{n~l)(x), n ^ 1. In [12] Pisot
establishes that if x is a real algebraic number larger that 1 such that

E"{x) 0 then x is a Pisot number. I ask the following question.

Problem 1. Is it true that if x > 1 is algebraic and if for some
k e N (k ^ 2) E(k)(x) 0 then x is a Pisot number?

A positive answer to this problem implies the weak form of Theorem 1,

namely that the sup is infinite. Indeed, define A0 {0} and for k ^ 1

A2k {Çe(0, 1)| 0(0 ^2k)
Let A'lk, A'fk, ••• be the derived sets of Alk. Clearly .4^
therefore

A?k+l)=0 •
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Now let a > 1 be a rational number which is not an integer. Suppose

sup ô(a") < oo

n

Then for some k

E(x) C Alk

hence

£(*+i)(x) 0

Assuming a positive answer to Problem 1, we conclude that x is a Pisot

number, i.e. a rational integer. This contradicts the assumption hence

sup 8(xn) oo QED

§3. More questions on 5(x")

H. Heilbronn [7], T. Tonkov [15] and finally J.W. Porter [13] improving
on one another established that as a tends to infinity

1 ^ (a\ 12I 5 - — In 2 In a + O(l)
<p(a) b<a \b/ 712

(a,b) 1

Independtly, J.D. Dixon [6] showed that for all s > 0 and for all
a,b, 1 < b < a < x with the exception of at most o{x2) couples, one has

Ô I — 1 - — In 2 In a

l

<(ln a)2
+ e

See H. Daudé's work for a dual result [5]. These results suggest the second

problem.

Problem 2. Is it true that for all coprime a and b, 1 < b < a

(1) lim — 8
n -» oo n

12
— In 2 In b
712

The limit should indeed be what is stated above and not

12
— In 2 In a
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since it is b, the smallest of the two integers a and b that seems to control the

behavior of (a/b)n. It is also to be noticed that in Dixon's inequality, the

In a that appears on the left hand side could well be replaced by In b

since for "almost all" couples a, b, \na « In b.

Numerical evidence supports equality (1). Based on computer computation,
Chr. Batut and M. Olivier showed that

- sff-Vi - — ln21n

is less than .02 for n in the range (4000, 5000) and for a 3, b 2

on the one hand and a 5, b 2 on the other hand.

§4. Related problems

My initial (unsuccessful) attempts to prove Theorem 1 were based on the

comparison of 8 (ax/b) to 8(x). I was hoping that a relationship between both
depths would give by induction some results on 8(xan/bn). This turned out
nonconclusive, yet I did obtain some results which I believe are interesting in
themselves [10].

Let a, b, c, d be coprime integers and let A *=> | ad - be |. Consider
the Möbius map

ax + b

cx + d

Theorem 2.

8(7*)
lim sup 0 (A)
ô (jc) -> OO 8 (x)

where 0 takes odd integral values. As n increases to infinity 0(n)
behaver like In n. More precisely let

1 + J/5

°-(2",iTJ) '•

Then for all integer n ^ 1

1 + aln/7 < 0(a) < 2(1 + ain/?)

0 is linked to the depth by the formula

(b\0 (n) max 8 1-1 + 1.
I ^ b ^ n \nJ
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Finally

8(7*) 1

lim inf
5(x)^oo d(x) 0(A)

The following table gives the first values of 0

n 1 2 3 4 5 6 7 8 9 10

G(n) 1333535555
Actually Theorem 1 can be improved. There exist two constants

Ci Ci(T) and C2 C2(T) such that for all rational x

1

8(x) - Cx ^ 5(Tx) ^ 0(A) ô(x) + C2
0(A)

Both inequalities are sharp apart from the exact values of Cx and C2.

5. More questions

To every Möbius map T we associate the interval I(T) [0 ~ 1 (A), 0(A)].

Problem 3. Is it true that for all Ç e I{T) there exists a sequence

of rational numbers xn such that lim ôfe) oo and
n ^ oo

8(Txn)
lim - Ç?

n -> oo 8 (Xn

Problem 4. Let T{, T2, - - - Tk be Möbius maps with pairwise
coprime determinants Ai, A2, • - •, Ak.

Is it true that for all
k

(c>c, •••,;*)e n im
i 1

there exists a sequence of rational xn with strictly increasing depths such

that for all i *= 1, 2, • • •, k

8(T<xn)
lim ; - Ç,-?

n-co &(X„)

Can k be infinite?

The following result should be mentioned at this point.



254 M. MENDÈS FRANCE

Theorem 3. There exists a sequence of rational numbers xn with
strictly increasing depths such that for all Möbius maps T

r 5(7*„)
lim 1

n -> co Ô (Xn

The proof is quite simple. To each irrational

x [CQ, C!,C2* M-1

we associate the sequence of best approximations

Pn r -i
Xn — — [Co C\ C2 j 5 cn\

Qn

Paul Lévy [9] showed that for almost all x
TT2

In q„ ~
12 In 2

as n goes to infinity (see for example [1] p. 45). In other words, for almost
all x

12 In 2
8(*/i) 7- In qn

71

Therefore, for almost all x

_21n2
Ô —In

laxn + b\ 12 lr
\cxn + d) 712

Now pn ~ xqn so that

cpn + dqn ~ +

\n{cp„ + dq„) In q„

Hence for almost all x

/ax„ + b\
\cxn + dj ô(*„) •

By countable intersection, we conclude that for almost all x and for all Möbius

map T

S(7x„) ~ 6(x„) QED
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Problem 5. Let T be a given Möbius map and let I(T) be the

associated interval. Let Ç e I(T). To compute the Hausdorff dimension of
those x for which

00 n

Extend this problem to higher dimensions in the spirit of problem 4.

§6. Quadratic surds

Let x be a real quadratic number. Its continued fraction expansion is

ultimately periodic. Let 7i(x) be its period. H. Cohen [3], followed by
J. Cusick [4] and Paysant-Leroux [11] studied the action of a Möbius map on
the period. They established that

n (Tx)
lim sup R(&)

n (x) -> oo 71 (x)

where R(A) is an integer. Furthermore

A n In n ^ R (n) ^ B n In n + 1

for some constants A > 0, B > 0. A simple argument then shows that

r f Jt(rx) 1

lim inf
7T(x)^oo 71 (x) R(Ä)

Problem 6. Is it true that for all real quadratic irrational x

sup 7i(x") oo

n

Define the interval

/(A)
1

*(A)
R(A)

Problem 7. Let L, e J(A).Prove the existence of a sequence of real
quadratic numbers x„withstrictly increasing period such that

n(Tx„)lim Ç,

n-*oo71 XnExtend this result to higher dimensions as in Problem 4.
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Problem 8. Does there exist a sequence xn of quadratic numbers with
strictly increasing period such that for all Möbius map T

«n{xn)
We believe some of our problems are relatively easy to solve. But quite

obviously Problem 1, 2 and maybe 6 are deep.

REFERENCES

[1] Billingsley, P. Ergodic Theory and Information. Wiley 1965.

[2] Choquet, G. Répartition des nombres k{3/2)"; et ensembles associés, (English
summary) C.R. Acad. Sei. Paris Sér. A-B 290 (1980), no. 13, A575-A580;
Algorithmes adaptés aux suites (£6") et aux chaines associées,
(English summary) C.R. Acad. Sei. Paris Sér. A-B 290 (1980), no. 16,

A719-A724; 0-jeux récursifs et application aux suites (k§n)\ solenoïdes
de Tz, (English summary) C.R. Acad. Sei. Paris Sér. A-B 290 (1980),
no. 19, A863-A868; Construction effective de suites (k(3/2)n). Etude des

mesures (3/2)-stables, (English summary) C.R. Acad. Sei. Paris Sér. A-B
291 (1980), no. 2, A69-A74; Les fermés (3/2)-stables de T; structure des

fermés dénombrables; applications arithmétiques, (English summary)
C.R. Acad. Sei. Paris Sér. A-B 291 (1980), no. 4, A-239-A244; 0-fermés;
0-chaines et 0-cycles (pour 0 3/2), (English summary) C.R. Acad. Sei.

Paris Sér. I Math. 292 (1981), no. 1, 5-10; 0-fermés et dimension de

Hausdorff. Conjectures de travail. Arithmétique des 0-cycles (où 0 3/2),
(English summary) C.R. Acad. Sei. Paris Sér. I Math. 292 (1981), no. 6,
339-344.

[3] Cohen, H. Multiplication par un entier d'une fraction continue périodique.
Acta Arith. 26 (1974), 129-148.

[4] Cusick, T. Integer multiples of periodic continued fractions. Pacific J.
Math. 78 (1978), 47-60.

[5] Daudé, H. Thèse, Caen 20 Janv. 1993.

[6] Dixon, J.D. The number of steps in the Euclidean algorithm. J. of Number
Theory 2 (1970), 414-422. A simple estimate for the number of steps in the
Euclidean algorithm. Amer. Math. Monthly 78 (1971), 374-376.

[7] Heilbronn, H. On the average length of a class of finite continued fractions.
In Abhandlungen aus Zahlentheorie und Analysis, Berlin 1968, edited by
P. Turàn, 87-96.

[8] Lamé, G. Note sur la limite... Comptes Rendus Acad. Sei. Paris 19 (1844),
867-870.

[9] Lévy, P. Sur le développement en fraction continue d'un nombre choisi au
hasard. Compositio Mathem. 3 (1936), 286-303.

[10] Mendès France, M. Quelques problèmes relatifs à la théorie des fractions
continues limitées. Séminaire de Théorie des Nombres Bordeaux 1971-72,
4 bis 01-09; Sur les fractions continues limitées, Acta Arith. 23 (1973),
207-215; The depth of a rational number, in Topics in Number Theory,
Debrecen 1974, Coll. Mathem. Soc. Jànoi Bolyai 13, 183-194.



CONTINUED FRACTIONS 257

[11] Paysant-Leroux, R. Transformation par une fonction homographique... in
Journées Arith. Caen. SMF Astérisque 41-42, 1977, 251-253.

[12] Pisot, C. Répartition (mod 1) des puissances successives des nombres réels.
Commentari. Math. Helv. 19 (1946-47), 153-160.

[13] Porter, J.W. On a theorem of Heilbronn. Mathematika 22 (1975), 20-28.
[14] Pourchet, Y. Private letter to Mendès France, 1972.
[15] Tonkov, T. On the average length of finite continued fraction. Acta Arith. 26

(1974), 47-57.
[16] van der Poorten, A. Some problems of recurrent interest. In Topics in

Classical Number Theory, Budapest 1981, Coll. Math. Soc. Jànos
Bolyai 34, edited by G. Halàsz, vol. 2, 1265-1294.

(Reçu le 13 avril 1993)

Michel Mendès France

Département de Mathématiques
Université de Bordeaux I
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Added in proof
L In a delightful article to appear "Origins of the Analysis of Algorithms",

J. Shallit discusses the early history of Ô(x),x e Q.
2. Recently (summer 1993), G. Grisel (University of Caen, France) managed to

show that for a large class of quadratic irrationals x, n(xn) is indeed unbounded so
that Problem 6 is partially solved.
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