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246 M. TIBAR

3.9. Example. Let X:={x3+ y*+ 7> =0} C C? and let f € mx ¢ be the
function induced by f € Mc3,o, f = x. Consider the linear function /
induced by [ = y. Then [ € Q. We get that A(/, f) is irreducible and has
the Puiseux parametrization: / = oav3, A = v*, where a is a nonzero constant,
easy to determine.

Let ce A(Lf)ynm(Dy x{n}) and let a ¢ A, f) n (D, X {n}) be a
neighbour point of c.

The monodromy 4, can be identified to the monodromy of the function
fa: (X4, 00> (C,0) induced by f,=v, where X,:={x =04,y =03,
z=1"2yv*} and y is a 3-root of — 1. We get (. (¢) = (1 — )%, hence
Caret = (1 — £)2.

By using (8), the final result is { ,(¢) = (1 —¢) ~3(1 —%)2. We also get
A(Sf) =3,

Notice that there is another way of computing the zeta function
in this example, by using the usual C*-action on X, which fixes the
zero set { f = 0}. It follows that the monodromy A, of f is equal to
the 3™ power of the monodromy 4, of the function g:(C2,0)— (C,0),
g=y*+7z3 and Chz(z‘) can be comp~uted frgm the eigenvalues of
h,. If we change the above function f into f;:= x + y, then the set
{f, =0} is no more invariant under the above-mentioned C*-action.
The computations for the zeta-function of hy are slightly more
complicated, since we get two Puiseux pairs, with n, =1, n;, = 3.
This time, the result is { , (#) = (1 —#)~1(1 —=#3)-1(1 - ¢°).
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