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(b) a set defined as in (4) or — if case — a similar one in a carrousel disc
of order 1, or

. o . )
(c) a centre of a carrousel disc of order 1 inside A4;, for some i € P, or

(d) the centre (0,n) of the big carrousel disc.

2.6. Definition. Let .# () be a maximal set of indices i € PV such that, if
i\, iye 7 M, then CV = CV.

For any i € .# (), denote by & (i) the carrousel disc of order 1 centred at
the point c(i): = éﬁ” A (D, X {n}). Let a(i) be an arbitrarily chosen point
on the boundary 88 (); it is, by definition, a regular value for /,.

Definition. Let a € (D \0) x {n} and let F, be the fibre of /, over a.
If ¢ is fixed by the carrousel, then the monodromy #, restricts to an action
on H*(F}), denoted by #,.

With these notations, we may formulate the following:

2.7. THEOREM. If fewmx, and [ € Qy, then:

A = A(flu=o) + X [N — AT
i€ f(l)

Proof. The Lefschetz number A(f) splits into a sum, following the
decomposition of the set of fixed points into connected components, see 2.5.
We use a suitable open covering of a set defined as in (4) and then apply the
Mayer-Vietoris exact sequence. The reason of considering the set .7 (D) relies
on the above discution. By a straightforward computation, using also
Lemma 2.1, we get our formula. [

Notice that carrousel discs of order > 2 do not enter in the above formula.

For the computation of A(h,;), A(h,;), we refer to Remarks 3.6. There
will be an example at the end.

3. ZETA-FUNCTION AND CARROUSEL MONODROMIES

3.1. Loosely speaking, each ‘‘important point’’ of the carrousel disc is fixed
after a finite number of turns of the carrousel. We have seen that the set of
fixed points after one turn determines the Lefschetz number A(4,). So the
set of fixed points after k turns is the one responsible for the number A (4 J’f).
It may contain a finite number of circles consisting of regular values for the
map /,. Actually, these circles do not count, as shown by Lemma 2.1 (where
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h s has to be replaced by & }‘). By examining the proof of Theorem 2.1, we get
a slightly more general result:

PROPOSITION. Let k> 1. If niifk Vie{l,...,r}, then A(hf)
:A(h’;l{lzo}). ]

3.2. Definition. Let U C D, x {n} and let ky:= min{k| U is globally
fixed by the k' iteration of the carrousel}. Then k}‘” restricts to an action on
H*(I/;'(U)), which we denote by hy. We call such actions carrousel
monodromies.

3.3. The zeta-function is determined by the set of Lefschetz numbers
A(h/’f), k > 1, as follows (see e.g. [Mi, p. 77], [A’C-2, p. 234]). If the
integers s;, S5, ... are inductively defined by A(hjlf) = X;(xSi, kK = 1, then the
zeta-function of f is given by:
(5) gty = II A —t))y-=rt.
i>1

On the other hand, if Z %) denotes some small enough neighbourhood of the
set of fixed points of the k'™ power of the carrousel, then h}‘ acts on the
cohomology H*(/;'(#®)) and, with the definition above, we get A(hj'f)
= Ah'zw)-

Let’s consider the annulus A4;, as before, in the big carrousel disc. Denote
by h,, the restriction of A, to H*(I;'(A4))).

If x € A; is fixed by some power k of the carrousel, then this power has
to be a multiple of #n; ;. This remark and formula (5) yield the relation:

(©6) (G, (1701 = Gyor (27)

Definition. For any i € {1, ...,r}, denote by &(i)( the carrousel disc
of order 1 centred at an arbitrarily chosen point of C §1) N (D, X {n}), but
fixed once and for all.

Let ZW:={8§=8()DV]ie{l,...,r}, 8()™ is not contained in any
other carrousel disc of order 1}. For § € &£, denote by a(8) an arbitrarily
chosen point on the boundary 95

Then we have the next recursive formula:

3.4. THEOREM. (/(8) =Ty, _o (0" I Chn@min) - C;&I(S)(t"f,l).
se LW

Proof. We apply Mayer-Vietoris exact sequences to the covering of the
carrousel disc described before. Since the fixed circles do not count for the
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Lefschetz numbers, we get that the zeta-function is a product over all different
annuli, each factor being of the form (, A,-(t)'

We employ the notations in 2.5. Notice that the set % " is well defined
for any i e {1, ...,r}. One can easily show that A, retracts to the subset
Fii=8u Usc "8, hence Ch/’j{;l(l‘) = Cny, (D).

If 8 € 1, then notice that there are n;; carrousel discs in 4; of the
same radius as §; if §,, 8, are any two of them, then Z;hél(t) = Chéz(t).

An open covering of #; and a Mayer-Vietoris argument lead to the
conclusion:

Chf%—,i(f) =[] [Ca1"r - [Cage (D170

66:?(1)

Using (6), our formula is now proved. Notice that the factor { /i {1:0}(0
corresponds to the disc A, defined in 1.8. [

It is not hard to figure out how the process started in the proof above may
continue. We apply Theorem 3.4 with /4, replaced by Az and get a formula
for the zeta-function C hé(z‘), for any & € M. In a finite number of steps,
going through the carrousel discs of order 1,2,...,m, where
m:= max{g;|ie{l,...,r}}, we get a formula for { ;(¢). To write it down,
we need just the following notations.

Definition. Let 8(i)®¥) denote the carrousel disc of order k centred
at a fixed (arbitrarily chosen) point of the set éﬁk) N Dy X {n}). (This
later set contains exactly n; ;- - n; ; points). Denote F(A"):= {S()® |i
e{l,..,r},kell,.., m}}.

For any 6 € ¥ (A’), denote by c(8) its centre and by a(8) an arbitrarily
chosen point on 95.

Let § € € (A'), where & = 8§(i)®, for some indices i/ and k as above.
Then define n(d):=n; - n; x.

Thus we get the following general zeta-function formula:

3.5. THEOREM. {,(1) = Gy o (D) - [T Gy @®) - ¢t (n®) . O

- a(8)
§e Z)

By using a decreasing induction, { ,(¢) will become finally a product of
integer powers of cyclotomic polynomials.

3.6. Remarks. (a) The points a(8), 6 € ¥ (A’) may also be defined as
follows (the precise details are left to the reader):
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Let & =8()® and let C® be (formally) defined by the equation
(see (3)): u; = g Amin/ma 4 «+o 4 Y6 by AmerD/miinik Then define
a curve G; x, by slightly perturbing in this equation just the last coefficient
b.1,> such that G; , # (Afj(-k), Vje{l,...,r}. For k = g;, we cut the Puiseux
expansion at a sufficiently high power of A and modify the last coefficient.

It follows that @ (8(i)®) may be identified to the point in G; , N (Dy X {N})
which is in the closest neighbourhood of ¢(8(i)®).

(b) Let 86:= 8(i)®. Then c(d) is a regular value for the map /, if and
only if, for any j € {1, ..., r} such that (A?ﬁ.k) = CA*Ek), we have g; > k. It is
possible that a(8) cannot be chosen arbitrarily close to c¢(8), see also
Remark 1.6.

(c) The carrousel monodromies /4.4, A, may be defined as
monodromies of functions. This remark was used by L€ in his proof of the
Monodromy Theorem [Lé-1], see also [Lo]. For instance, if & = §(i/)® and
(u® (), A(t)) is the parametrization of (}Ek) defined in 1.5, then the
pull-back diagram:

(X{,0) —+ (X, 0)
(7) 79 le

]

(C,0) - (C2,0)

defines a space (X{“,0) and a function f on it. Then hl4 is the
monodromy of f Ek).

3.7. We illustrate the formula on the following particular case: any
component A; has just one Puiseux pair, i.e. g;=1,Vie{l,...,r}. We
assume, for the sake of simplicity, that the sets of components of I'(/, f) and
A ([, f) are in one-to-one correspondence.

In this case, we have C" = A; and a carrousel disc §(i)® is an
arbitrarily small disc centred at c(8())®) e A; n (Dy X {n}), which is
pointwise fixed by the n; ;™ iterate of the big carrousel. It follows that the
point a(8(/)V) can be chosen arbitrarily close to ¢(8(i)("). The centres
c(8), 8 € € (A") are critical values for the map /,. Let ¢(i) denote a fixed,
arbitrarily chosen point of the set A; N (Dy X {n}). Then €(A’) can be
identified to the set {c(i)|ie{l,...,r}}. With these notations, the
zeta-function formula becomes

®) 80 =@ T Gg, e,

ie{l,..r
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where Al H* (1, '(c(3)), Iy '(a(8))) © is the relative monodromy and its
zeta-function is Cyreh (1) = Gz (D Gy, (1)- One also gets A(S) = Alfju=o)
+ Xie(l,rtin = 1A(h£eili))-

By standard arguments, H*(I/;'(c(d)), [, '(a(8))) is_isomorphic to
the direct sum of reduced cohomologies @uelu—l(c(é))r\FH "I(F;), where
F':=B,.n ;' (a(d)) is the local Milnor fibre and B, . is a Milnor ball of
the isolated singularity at v. Let d;:= # I, '(c(i)) n T.

A pointv e [/ '(c(i)) n T goes, after n; ; complete turns of the carrousel,
to v’ el (c())) nT and v" # v if n; > 2. After exactly n; d; turns, the
point v is fixed.

It becomes clear how the relative monodromy acts on the above direct sum;
by similar arguments as those in [Si, p. 192], one shows that the matrix
of hf(li) may be assumed to have the following block decomposition

000 . . . 0 VTrd]
I 0. . .0 0
0 I 0
. .0 .
0 . . . 01 0o

where, at some fixed v(i) € I; '(c(i)), I is the identity matrix on f}'(F;(,-)),
T; is the horizontal monodromy of the transversal singularity and V; is the
vertical monodromy of the local system on I';,\{0}, with fibre H “(Foi)-
Then {u (1) = T odet[l — ¢4V, T71%  HI(F, )], Finally, our
formula looks as follows:
©) Cr(0)

=G - T1 TI detl — gmadiV Ty HI(E, )] D7

ief{l,..,r} j=0

3.8. This latter one may be easily specialized to the Siersma’s formula
[loc. cit.]. Let A, be the most exterior annulus and assume that the
components of A which cut 4,, are Ay, ..., A, and they have just one Puiseux
pair. Denote D, _;:= Dy X {n}\A,,. By our approach we get {,(¢)
= Cnp,,_ () " Micyr, . s Carel (2700).

Let then g be a function with 1-dimensional singular locus
Y= Ujeq,.,sp=i and let f:= g + IX, for some / € Q,, with K € N large
enough. Then f is an isolated singularity and, as shown in [Si], one may
identify the monodromy of the Milnor fibre F, to Ap__,. The degree of the
covering X£,\{0} > A;\{0} is d;. Then one gets [Si, p. 183]:

(10) Cr() =0ty I det[l — tkaiy, . T (-1dimx.0

ie{l,..s}




246 M. TIBAR

3.9. Example. Let X:={x3+ y*+ 7> =0} C C? and let f € mx ¢ be the
function induced by f € Mc3,o, f = x. Consider the linear function /
induced by [ = y. Then [ € Q. We get that A(/, f) is irreducible and has
the Puiseux parametrization: / = oav3, A = v*, where a is a nonzero constant,
easy to determine.

Let ce A(Lf)ynm(Dy x{n}) and let a ¢ A, f) n (D, X {n}) be a
neighbour point of c.

The monodromy 4, can be identified to the monodromy of the function
fa: (X4, 00> (C,0) induced by f,=v, where X,:={x =04,y =03,
z=1"2yv*} and y is a 3-root of — 1. We get (. (¢) = (1 — )%, hence
Caret = (1 — £)2.

By using (8), the final result is { ,(¢) = (1 —¢) ~3(1 —%)2. We also get
A(Sf) =3,

Notice that there is another way of computing the zeta function
in this example, by using the usual C*-action on X, which fixes the
zero set { f = 0}. It follows that the monodromy A, of f is equal to
the 3™ power of the monodromy 4, of the function g:(C2,0)— (C,0),
g=y*+7z3 and Chz(z‘) can be comp~uted frgm the eigenvalues of
h,. If we change the above function f into f;:= x + y, then the set
{f, =0} is no more invariant under the above-mentioned C*-action.
The computations for the zeta-function of hy are slightly more
complicated, since we get two Puiseux pairs, with n, =1, n;, = 3.
This time, the result is { , (#) = (1 —#)~1(1 —=#3)-1(1 - ¢°).
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