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234 M. TIBAR

The formula for  ,(#) will be not the same, but quite similar to the ones
before. The ingredients are zeta-functions of fibres over certain periodic points
in the carrousel disc. We show in Sections 2 and 3 how to define these points
from the Puiseux expansion of A(/, f). We end by some applications.

Aknowledgement. This work is based on a piece of the author’s
disertation [Ti]. He much benefited from talks with Dirk Siersma, whose
paper [Si] incited him to do this research (see 3.8).

1. THE CARROUSEL REVISITED

1.1.  We first briefly recall the carrousel construction, following closely [Lé-1]
and [Leé-3], then give the necessary definitions for our study. One regards
(X, x) as being embedded in (C¥, 0), for some sufficiently large N € N. We
assume that, unless otherwise stated, all the irreducible components of (X, 0)
have dimensions greater than 1.

Let &£ be a small enough representative of (X, 0). Let I'(/, f) be the polar
curve of f with respect to a linear function /: (X, 0) = (C, 0), relatively to a
fixed Whitney stratification 7 on <& which satisfies Thom condition (ay).

The polar curve I'(/, f) exists for a Zariski open subset Q rin the space of
linear germs /: (CV, 0) — (C, 0). If one does not impose I'(/, f) to be reduced
then one gets a larger set Q; D Q ¢ which is sometimes useful to deal with
(see e.g. Example 2.2). (We only mention that one can enlarge even Q;:
modify its definition by allowing also nonlinear functions.)

1.2. Let/e Qrandlet ®:= (4, f): (X, 0) = (C?, 0). We denote by (u, &) the
pair of coordinates on C?2.

The curve germ (with reduced structure) A(/, f) : = ®(I'(, f)) is called the
Cerf diagram (of f with respect to /, relative to ). We shall use the same
notation I'(/, f), respectively A(/l, f) for suitable representatives of these
germs.

There is a fundamental system of ‘‘privileged’’ open polydiscs in C%,
centred at 0, of the form (D, X P,), 4 and a corresponding fundamental
system (Dy X D})qc4 of 2-discs at 0 in C?, such that ® induces, for any
a € A, a topological fibration

Dy Z N (Do X Po) N @ 1(Dy x DIN(A( f) U {\ = 0}))
= Do x DIN(A(LF) U {X = 0}).
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Moreover, f induces a topological fibration

far & 0 (Do X Py) 0 fHDN0}) = D MO,
respectively

fir % 0 ({0} x Po) N f=1DN0}) = D\ O}

which is fibre homeomorphic to the Milnor fibration of f, respectively to the
Milnor fibration of fj;; - . The disc D, has been chosen small enough such
that A(, f) ndD, X D, = &.

1.3. One can build an integrable smooth vector field on D, X S, — where
S! is some circle in D; of radius sufficiently close to the radius of 8D,
— such that, mainly, it is tangent to A(/, f) N (D, X S,) and it lifts the unit
vector field of S, by the projection D, X S; = S, . Lifting the former vector
field by ®, and integrating it, one gets a characteristic homeomorphism of
the fibration induced by f, over S, hence a geometric monodromy of the
Milnor fibre F; of f. We call it the (geometric) carrousel monodromy.
For some fixed n € S, let

(1) lo: &0 ®7 (Dy X {n}) = Dy x {n}

be the restriction of @, and notice that F; is homeomorphic to
l; ' (Do % {n}).

The integration of the vector field on D, X S, produces a ‘‘carrousel’’
of the disc D, X {n}: the trajectory inside D, X S, of some point
a € D, X {n} projects onto S); one turn around the circle S, moves
the point ¢ to some other point ¢’ € D, X {n}. By construction, the vector
field restricted to {0} x S/ is the unit vector field of S,, hence the centre
(0,1) of the carroussel disc is indeed fixed; the circle dD, X {n} is also
pointwise fixed.

The distinguished points A(/, f) N Dy X {n} of the disc have a complex
motion around (0, n), depending on the Puiseux parametrizations of the
branches of A which are not included in {u# = 0}. Moreover, these Puiseux
expansions determine the motion of any ‘‘important’’ point in the carrousel,
as briefly described in the next.

1.4. Our notation is close to the one in [BK].

Let A:=A(,f) and let A" = U;cq,. A, be the union of those
irreducible components of A which are not included in {# = 0}.
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For i e {l1,...,r}, we consider a Puiseux parametrization of A; with
reduced structure:

A= t"
(2) u= Y ct/, forsomemneZ,,c;eC,c,#0.
Jjzm

Notice that m < n. The Puiseux parametrization enables one to formally
write u as a function of A:

/y
U= aAm'm Z by AGm+D/m g ) ma/nina

3) =

bz,[}\’(l’H2+[)/n1H2 R = akgkmg/nl..-ng e Z bg,[x(mg+[)/nl...ng ,
1 />0

+
/

Il M,y

where g is a positive integer, ged(m;,n;) = 1,vj e {1, ...,, g} and n; # 1,
vje{2,...,g}. Notice that m;/n, = m/n and Ak, = Cp -

5 A .
1.5. We now define two sequences {Cf”}je{l,_”g}, {CE’)}je{l,_”g} of

successive approximation of A;,i e {1, ..., r}:
. /)
ng): u = akl}\’ml/nl + Z bl,l)\‘(m1+/)/n1 4o 4 akj;\‘mj/nl...nj ,
[=1
/\(. /y
ij): u = ak])\‘ﬂu/nl + Z bl,[}\,(ml—’_l)/nl 4+ e 4+ akj},mj/nl"'”j

=1

l
+ Z b (At D/
I=1

and C/\:l(-g) — A,’.

The curve C" intersects the carrousel disc D, X {n} in n; points situated
on a circle and their carrousel motion is a rotation of angle 2nm,;/n,. If we
take C () instead, we get also n, intersection points but their position is a
slight perturbation of the previous one.

Each of the points C" n (D, X {n}) is the centre of a small disc which
contains just one point from the set é}” N (D, X {n}). This latter one,
called a distinguished point, becomes the centre of a new (smaller) carrousel.

Our next definition will play a central role.

1.6. Definition. We call carrousel disc of order k a sufficiently small open
disc centred at some point c € (}Ek) N D, x{n}), i e{l,...,r}, which
contains all the points éj(-k”) N Dy X {n}),vI>0,vje{l,... r} such
that (A?J(-k) = C®, which are close enough (“‘satellites™”) to c. If 8,, 8, are two
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smaller carrousel discs (not necessarily of the same order), then they are either
disjoint or included one in the other.

We may and do assume that the carrousel discs of order k centred at the
points C*® A (D x {n}), i €{1, ..., r}, are of equal radii.

Remark. A small carrousel disc of order k may contain other carrousel
discs of the same order. In the next example:

A A
Ay ouy=a2 4272, eV CP, A= C,
Ay Uy = A2+ A4 C(l) C(l) C(l) A, = Cg?‘) ,

a carrousel disc of order 1 corresponding to A, contains a carrousel disc of
order 1 corresponding to A;.

1.7. Finally, a simultaneous parametrization of all analytic branches of
AN:N=1", uy =25, ar,t/, for ke{l,...,r}, leads to the construction
of the full carrousel.

If we define the ‘“essential’’ curve associated to A; by:

AS: u= @ MMM @ MM e g A g

then the carrousel associated to A = U ;... nA] might be called an
‘““ideal carrousel’’. However, the topological type of the link A’ may be not

the same as the one of Acs.

1.8. Denote by (m; ;, n; j)je11,.., ¢ the Puiseux pairs of A;, vi e {1,...,r}.
Suppose that we have the following ordering among the first Puiseux pairs
(eventually after some permutation of indices): my /n; 1 = m, /ny
> z2me /Ny

To each branch A, there corresponds an annulus A4; — with central
symmetry at (0,mn) — inside the carrousel disc, such that A; contains
A;n (D, X {n}), see [Lé-1]. We also define A, to be an arbitrarily small
open disc centred in (0,n). By definition, A; = A; if and only if m; /n;
= m; /nj .

For any i € {1, ..., r}, there are n; carrousel discs 8, ;, 7 € {1, ..., ni 1},
of order 1, centred at the n; , points C( "N (D, X {nD). In case of the
‘““ideal”” carrousel, these points rotate around (0,7m) by 2nm,; /n; ;. The
annulus A; contains all the carrousel discs 8, ; such that C{" = C! n . Each
point of the annulus A;, outside any disc d, ;, is fixed by the n; th

iterate of the carrousel. The disc A, is just pointwise fixed by the
carrousel.
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Of course, one needs a continuous transition between two annuli. The
transition zone will be a sufficiently thin annulus connecting 4;to A4;,, such
that the collection of A;s and transition zones give a partition of the
carrousel disc.

2. LEFSCHETZ NUMBER VIA THE CARROUSEL

Let mx o denote the maximal ideal of the local ring Zx . A’Campo
proves via the resolution of singularities that, if fe m;o, then A(f) =0
([A’C-1, Théoréme 1bis]).

Alternatively, the carrousel construction can provide information on the
Lefschetz number. This was the idea of L&, who showed that, if fe mi,o,
and (X, 0) is smooth, then the carrousel monodromy has no fixed points
outside the slice {/ = 0}, so A(f) = 0 by induction.

We extend this result by studying the set of fixed points in case
fe mx,o\mi,o-

2.1. THEOREM. Let all the irreducible components of (X, 0) have dimen-
sions greater than 1. If n; > 1, Vie{l,...,r}, then A(f) = A(flu=0)-

Proof. Assume that A ¢ {u = 0}. Since n; ; > 1, the carrousel cons-
truction tells us that the discs &, ; (defined in 1.8), with ns ; = n; ;, are
cyclically permuted (by a cycle of length n; ;).

We may conclude that no point in the carrousel disc is fixed, except the
centre and, possibly, some subsets in the transition zones. In each transition
zone the subset of fixed points is a finite union of circles, all centred
at (0, n).

One can decompose the Milnor fibre F,into suitable pieeces on which the
geometric monodromy acts and such that the Mayer-Vietoris exact sequence
can be applied. Actually, we first cover the carrousel disc by some annuli like
those defined in 1.8, then lift this patching to the Milnor fibre. If A4, is small
enough, then /; '(0,n) is a deformation retract of I, '(A4,).

We may conclude: A(f) = A(fjy=0;), provided that the Lefschetz
number of the restriction of the monodromy on any piece of F, which is the
lift by /, of some pointwise fixed circle is zero. This fact is emphasized in the
next lemma, whose proof is left to the reader. The case A C {u = 0} leads to
the same conclusion. [

LEMMA. If the carrousel disc D, X {n} contains a circle S of
fixed points, all of them regular values for the map [I,, then
Ay H (' ®) = 0. O
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