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CARROUSEL MONODROMY
AND LEFSCHETZ NUMBER OF SINGULARITIES

by Mihai TIBAR

INTRODUCTION

Let f:(X,x)— (C,0) be a holomorphic function on an analytic
germ (X, x). Let A, denote the monodromy of the germ \P;(C;{)x of
neighbouring cycles. One defines its Lefschetz number

Athp):= Y (= 1) trace [hs; P(CY):]

i>0
and its zeta-function

Ca (1) 1= Hodet[l— t-hy; WH(Cy) D
P>
We alternatively denote them by A(f), respectively C ((f).

A theorem of Eisenbud and Neumann [EN, Theorem 4.3] asserts that the
zeta-function of a fibred multilink L is the product of the zeta-functions over
all splice components of L. If the multilink is defined by some Cerf
diagram A(/, f), then { ;(#) becomes the zeta-function of the multilink L,
this time with coefficients in a local system. This observation of Némethi [Ne]
enables him to prove an inductive formula for { ;(f), in terms of invariants
of the so called EN-diagram (splice diagram); compare to the one of Eisenbud
and Neumann [EN, p. 96]. Some quite strong results in the 3-dimensional link
theory are involved in the proofs.

Our approach is based on L&’s carrousel construction and is therefore more
geometric and selfcontained. It yields inductive formulae for A(f) and C /(¢)
directly from the Puiseux parametrization of A(/, f). Moreover, it clarifies the
contribution, however essential in general, of the ‘‘nonessential’’ terms in this
parametrization — which may be not clear from the definition of the splice
diagram of an algebraic link given in [EN, p. 53], simply because such terms
are completely omitted. One can therefore compare to our definitions 1.5 = 7.
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The formula for  ,(#) will be not the same, but quite similar to the ones
before. The ingredients are zeta-functions of fibres over certain periodic points
in the carrousel disc. We show in Sections 2 and 3 how to define these points
from the Puiseux expansion of A(/, f). We end by some applications.

Aknowledgement. This work is based on a piece of the author’s
disertation [Ti]. He much benefited from talks with Dirk Siersma, whose
paper [Si] incited him to do this research (see 3.8).

1. THE CARROUSEL REVISITED

1.1.  We first briefly recall the carrousel construction, following closely [Lé-1]
and [Leé-3], then give the necessary definitions for our study. One regards
(X, x) as being embedded in (C¥, 0), for some sufficiently large N € N. We
assume that, unless otherwise stated, all the irreducible components of (X, 0)
have dimensions greater than 1.

Let &£ be a small enough representative of (X, 0). Let I'(/, f) be the polar
curve of f with respect to a linear function /: (X, 0) = (C, 0), relatively to a
fixed Whitney stratification 7 on <& which satisfies Thom condition (ay).

The polar curve I'(/, f) exists for a Zariski open subset Q rin the space of
linear germs /: (CV, 0) — (C, 0). If one does not impose I'(/, f) to be reduced
then one gets a larger set Q; D Q ¢ which is sometimes useful to deal with
(see e.g. Example 2.2). (We only mention that one can enlarge even Q;:
modify its definition by allowing also nonlinear functions.)

1.2. Let/e Qrandlet ®:= (4, f): (X, 0) = (C?, 0). We denote by (u, &) the
pair of coordinates on C?2.

The curve germ (with reduced structure) A(/, f) : = ®(I'(, f)) is called the
Cerf diagram (of f with respect to /, relative to ). We shall use the same
notation I'(/, f), respectively A(/l, f) for suitable representatives of these
germs.

There is a fundamental system of ‘‘privileged’’ open polydiscs in C%,
centred at 0, of the form (D, X P,), 4 and a corresponding fundamental
system (Dy X D})qc4 of 2-discs at 0 in C?, such that ® induces, for any
a € A, a topological fibration

Dy Z N (Do X Po) N @ 1(Dy x DIN(A( f) U {\ = 0}))
= Do x DIN(A(LF) U {X = 0}).
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