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CARROUSEL MONODROMY
AND LEFSCHETZ NUMBER OF SINGULARITIES

by Mihai TIBAR

INTRODUCTION

Let f:(X,x)— (C,0) be a holomorphic function on an analytic
germ (X, x). Let A, denote the monodromy of the germ \P;(C;{)x of
neighbouring cycles. One defines its Lefschetz number

Athp):= Y (= 1) trace [hs; P(CY):]

i>0
and its zeta-function

Ca (1) 1= Hodet[l— t-hy; WH(Cy) D
P>
We alternatively denote them by A(f), respectively C ((f).

A theorem of Eisenbud and Neumann [EN, Theorem 4.3] asserts that the
zeta-function of a fibred multilink L is the product of the zeta-functions over
all splice components of L. If the multilink is defined by some Cerf
diagram A(/, f), then { ;(#) becomes the zeta-function of the multilink L,
this time with coefficients in a local system. This observation of Némethi [Ne]
enables him to prove an inductive formula for { ;(f), in terms of invariants
of the so called EN-diagram (splice diagram); compare to the one of Eisenbud
and Neumann [EN, p. 96]. Some quite strong results in the 3-dimensional link
theory are involved in the proofs.

Our approach is based on L&’s carrousel construction and is therefore more
geometric and selfcontained. It yields inductive formulae for A(f) and C /(¢)
directly from the Puiseux parametrization of A(/, f). Moreover, it clarifies the
contribution, however essential in general, of the ‘‘nonessential’’ terms in this
parametrization — which may be not clear from the definition of the splice
diagram of an algebraic link given in [EN, p. 53], simply because such terms
are completely omitted. One can therefore compare to our definitions 1.5 = 7.
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The formula for  ,(#) will be not the same, but quite similar to the ones
before. The ingredients are zeta-functions of fibres over certain periodic points
in the carrousel disc. We show in Sections 2 and 3 how to define these points
from the Puiseux expansion of A(/, f). We end by some applications.

Aknowledgement. This work is based on a piece of the author’s
disertation [Ti]. He much benefited from talks with Dirk Siersma, whose
paper [Si] incited him to do this research (see 3.8).

1. THE CARROUSEL REVISITED

1.1.  We first briefly recall the carrousel construction, following closely [Lé-1]
and [Leé-3], then give the necessary definitions for our study. One regards
(X, x) as being embedded in (C¥, 0), for some sufficiently large N € N. We
assume that, unless otherwise stated, all the irreducible components of (X, 0)
have dimensions greater than 1.

Let &£ be a small enough representative of (X, 0). Let I'(/, f) be the polar
curve of f with respect to a linear function /: (X, 0) = (C, 0), relatively to a
fixed Whitney stratification 7 on <& which satisfies Thom condition (ay).

The polar curve I'(/, f) exists for a Zariski open subset Q rin the space of
linear germs /: (CV, 0) — (C, 0). If one does not impose I'(/, f) to be reduced
then one gets a larger set Q; D Q ¢ which is sometimes useful to deal with
(see e.g. Example 2.2). (We only mention that one can enlarge even Q;:
modify its definition by allowing also nonlinear functions.)

1.2. Let/e Qrandlet ®:= (4, f): (X, 0) = (C?, 0). We denote by (u, &) the
pair of coordinates on C?2.

The curve germ (with reduced structure) A(/, f) : = ®(I'(, f)) is called the
Cerf diagram (of f with respect to /, relative to ). We shall use the same
notation I'(/, f), respectively A(/l, f) for suitable representatives of these
germs.

There is a fundamental system of ‘‘privileged’’ open polydiscs in C%,
centred at 0, of the form (D, X P,), 4 and a corresponding fundamental
system (Dy X D})qc4 of 2-discs at 0 in C?, such that ® induces, for any
a € A, a topological fibration

Dy Z N (Do X Po) N @ 1(Dy x DIN(A( f) U {\ = 0}))
= Do x DIN(A(LF) U {X = 0}).
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Moreover, f induces a topological fibration

far & 0 (Do X Py) 0 fHDN0}) = D MO,
respectively

fir % 0 ({0} x Po) N f=1DN0}) = D\ O}

which is fibre homeomorphic to the Milnor fibration of f, respectively to the
Milnor fibration of fj;; - . The disc D, has been chosen small enough such
that A(, f) ndD, X D, = &.

1.3. One can build an integrable smooth vector field on D, X S, — where
S! is some circle in D; of radius sufficiently close to the radius of 8D,
— such that, mainly, it is tangent to A(/, f) N (D, X S,) and it lifts the unit
vector field of S, by the projection D, X S; = S, . Lifting the former vector
field by ®, and integrating it, one gets a characteristic homeomorphism of
the fibration induced by f, over S, hence a geometric monodromy of the
Milnor fibre F; of f. We call it the (geometric) carrousel monodromy.
For some fixed n € S, let

(1) lo: &0 ®7 (Dy X {n}) = Dy x {n}

be the restriction of @, and notice that F; is homeomorphic to
l; ' (Do % {n}).

The integration of the vector field on D, X S, produces a ‘‘carrousel’’
of the disc D, X {n}: the trajectory inside D, X S, of some point
a € D, X {n} projects onto S); one turn around the circle S, moves
the point ¢ to some other point ¢’ € D, X {n}. By construction, the vector
field restricted to {0} x S/ is the unit vector field of S,, hence the centre
(0,1) of the carroussel disc is indeed fixed; the circle dD, X {n} is also
pointwise fixed.

The distinguished points A(/, f) N Dy X {n} of the disc have a complex
motion around (0, n), depending on the Puiseux parametrizations of the
branches of A which are not included in {u# = 0}. Moreover, these Puiseux
expansions determine the motion of any ‘‘important’’ point in the carrousel,
as briefly described in the next.

1.4. Our notation is close to the one in [BK].

Let A:=A(,f) and let A" = U;cq,. A, be the union of those
irreducible components of A which are not included in {# = 0}.
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For i e {l1,...,r}, we consider a Puiseux parametrization of A; with
reduced structure:

A= t"
(2) u= Y ct/, forsomemneZ,,c;eC,c,#0.
Jjzm

Notice that m < n. The Puiseux parametrization enables one to formally
write u as a function of A:

/y
U= aAm'm Z by AGm+D/m g ) ma/nina

3) =

bz,[}\’(l’H2+[)/n1H2 R = akgkmg/nl..-ng e Z bg,[x(mg+[)/nl...ng ,
1 />0

+
/

Il M,y

where g is a positive integer, ged(m;,n;) = 1,vj e {1, ...,, g} and n; # 1,
vje{2,...,g}. Notice that m;/n, = m/n and Ak, = Cp -

5 A .
1.5. We now define two sequences {Cf”}je{l,_”g}, {CE’)}je{l,_”g} of

successive approximation of A;,i e {1, ..., r}:
. /)
ng): u = akl}\’ml/nl + Z bl,l)\‘(m1+/)/n1 4o 4 akj;\‘mj/nl...nj ,
[=1
/\(. /y
ij): u = ak])\‘ﬂu/nl + Z bl,[}\,(ml—’_l)/nl 4+ e 4+ akj},mj/nl"'”j

=1

l
+ Z b (At D/
I=1

and C/\:l(-g) — A,’.

The curve C" intersects the carrousel disc D, X {n} in n; points situated
on a circle and their carrousel motion is a rotation of angle 2nm,;/n,. If we
take C () instead, we get also n, intersection points but their position is a
slight perturbation of the previous one.

Each of the points C" n (D, X {n}) is the centre of a small disc which
contains just one point from the set é}” N (D, X {n}). This latter one,
called a distinguished point, becomes the centre of a new (smaller) carrousel.

Our next definition will play a central role.

1.6. Definition. We call carrousel disc of order k a sufficiently small open
disc centred at some point c € (}Ek) N D, x{n}), i e{l,...,r}, which
contains all the points éj(-k”) N Dy X {n}),vI>0,vje{l,... r} such
that (A?J(-k) = C®, which are close enough (“‘satellites™”) to c. If 8,, 8, are two



CARROUSEL MONODROMY 237

smaller carrousel discs (not necessarily of the same order), then they are either
disjoint or included one in the other.

We may and do assume that the carrousel discs of order k centred at the
points C*® A (D x {n}), i €{1, ..., r}, are of equal radii.

Remark. A small carrousel disc of order k may contain other carrousel
discs of the same order. In the next example:

A A
Ay ouy=a2 4272, eV CP, A= C,
Ay Uy = A2+ A4 C(l) C(l) C(l) A, = Cg?‘) ,

a carrousel disc of order 1 corresponding to A, contains a carrousel disc of
order 1 corresponding to A;.

1.7. Finally, a simultaneous parametrization of all analytic branches of
AN:N=1", uy =25, ar,t/, for ke{l,...,r}, leads to the construction
of the full carrousel.

If we define the ‘“essential’’ curve associated to A; by:

AS: u= @ MMM @ MM e g A g

then the carrousel associated to A = U ;... nA] might be called an
‘““ideal carrousel’’. However, the topological type of the link A’ may be not

the same as the one of Acs.

1.8. Denote by (m; ;, n; j)je11,.., ¢ the Puiseux pairs of A;, vi e {1,...,r}.
Suppose that we have the following ordering among the first Puiseux pairs
(eventually after some permutation of indices): my /n; 1 = m, /ny
> z2me /Ny

To each branch A, there corresponds an annulus A4; — with central
symmetry at (0,mn) — inside the carrousel disc, such that A; contains
A;n (D, X {n}), see [Lé-1]. We also define A, to be an arbitrarily small
open disc centred in (0,n). By definition, A; = A; if and only if m; /n;
= m; /nj .

For any i € {1, ..., r}, there are n; carrousel discs 8, ;, 7 € {1, ..., ni 1},
of order 1, centred at the n; , points C( "N (D, X {nD). In case of the
‘““ideal”” carrousel, these points rotate around (0,7m) by 2nm,; /n; ;. The
annulus A; contains all the carrousel discs 8, ; such that C{" = C! n . Each
point of the annulus A;, outside any disc d, ;, is fixed by the n; th

iterate of the carrousel. The disc A, is just pointwise fixed by the
carrousel.
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Of course, one needs a continuous transition between two annuli. The
transition zone will be a sufficiently thin annulus connecting 4;to A4;,, such
that the collection of A;s and transition zones give a partition of the
carrousel disc.

2. LEFSCHETZ NUMBER VIA THE CARROUSEL

Let mx o denote the maximal ideal of the local ring Zx . A’Campo
proves via the resolution of singularities that, if fe m;o, then A(f) =0
([A’C-1, Théoréme 1bis]).

Alternatively, the carrousel construction can provide information on the
Lefschetz number. This was the idea of L&, who showed that, if fe mi,o,
and (X, 0) is smooth, then the carrousel monodromy has no fixed points
outside the slice {/ = 0}, so A(f) = 0 by induction.

We extend this result by studying the set of fixed points in case
fe mx,o\mi,o-

2.1. THEOREM. Let all the irreducible components of (X, 0) have dimen-
sions greater than 1. If n; > 1, Vie{l,...,r}, then A(f) = A(flu=0)-

Proof. Assume that A ¢ {u = 0}. Since n; ; > 1, the carrousel cons-
truction tells us that the discs &, ; (defined in 1.8), with ns ; = n; ;, are
cyclically permuted (by a cycle of length n; ;).

We may conclude that no point in the carrousel disc is fixed, except the
centre and, possibly, some subsets in the transition zones. In each transition
zone the subset of fixed points is a finite union of circles, all centred
at (0, n).

One can decompose the Milnor fibre F,into suitable pieeces on which the
geometric monodromy acts and such that the Mayer-Vietoris exact sequence
can be applied. Actually, we first cover the carrousel disc by some annuli like
those defined in 1.8, then lift this patching to the Milnor fibre. If A4, is small
enough, then /; '(0,n) is a deformation retract of I, '(A4,).

We may conclude: A(f) = A(fjy=0;), provided that the Lefschetz
number of the restriction of the monodromy on any piece of F, which is the
lift by /, of some pointwise fixed circle is zero. This fact is emphasized in the
next lemma, whose proof is left to the reader. The case A C {u = 0} leads to
the same conclusion. [

LEMMA. If the carrousel disc D, X {n} contains a circle S of
fixed points, all of them regular values for the map [I,, then
Ay H (' ®) = 0. O
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2.2. Example. Let (X,0) be a 2-dimensional isolated cyclic quotient
singularity, where X is the algebraic quotient of C? by a cyclic group of
order 5, usually denoted by Xs ,: if & is a primitive 5-root of 1, then a
generator of our group acts on C2? by (x, y) = (Ex, £2).

Let f:(C2,0) - (C,0), f—x5+y and let f:(X, O) (C,0) be the
induced function on the quotient. Take a function [ (C?,0)— (C 0),
| = xy? and let / be the induced linear function on (X 0). Then / QEQ s, but
[ € Q. Notice that f € mx o\ mX q-

We get that A’(/, f) is irreducible and has a 1-term Puiseux parametrization
with Puiseux pair (3, 5). There follows A(f) = A(fly=0))-

The Milnor fibre of fj - has two components: each of them is the
Milnor fibre of a linear function on (C, 0). This implies that A(fj;1-0}) = 2,
hence A(f) = 2.

2.3. COROLLARY [A’C-1, Théoréme 1bis]. Let (X,0) be an analytic
germ of dimension > 1. If f € mi’o then A(f) = 0.

Proof. Let (X,0) = (X, 0) u (X;,0), where (X5, 0) is the union of the
irreducible components of (X, 0) which are of dimension > 2 and (X, 0) is
the union of the 1-dimensional branches of (X, 0).

We slice (X, 0) by a general hyperplane defined by some / € Q(and treat
separately the 1-dimensional components of the slice. If fe miz, o then each
component of the Cerf diagram A(/, f) is tangent to the axis {A = 0},
provided that / is general enough. The proof of this fact is similar to the proof
of [Lé-4, Proposition 1.2], but this time the underlying space may be not
smooth (see [Ti] for details).

Tangency to {A = 0} means exactly that m; /n; , < 1, in particular
niy>1,Vie{l,...,r}. Thus, our proof relays on a decreasing induction:
at each step, we may apply Theorem 2.1. The assertion for 1-dimensional
branches is proved by the next easy lemma. L]

LEMMA. If (X,0) is 1-dimensional, irreducible and if f e mi,o then
there is a geometric monodromy of [ without fixed points. L]

As a complement to Theorem 2.1, we have the following precise deter-
mination of the Lefschetz number in case dim(X, 0) =

2.4. PROPOSITION. If (X,0) = U, x(C;,0) isa curve and its decompo-
sition into irreducible components, then, for any fe mx \m% ,, we have:

A(f) = #{i e R|(C;,0) is smooth and feme, o\m¢ ,}.
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Proof. Let fi:= f|«, oy- Then the Milnor fibre of f is a finite set, the
disjoint union of the Milnor fibres of f;, i € R. Hence, A(f) = Z;crA(f)).

If (C;,0) is smooth, then one has: A(f;))=1 if and only if
fiemg, o\m¢. .

If (C;, 0) is not smooth, let n;: (C ;, a;) = (C;, 0) be its normalization. It
follows f; o n; e mzé,-,a,.’ hence the geometric monodromy of f; is fixed-
point-free and A(f;) = 0. [J

2.5. Define PO :={ie{l,..,r}|n;,, =1}.

For i € P, let B; be the union of all carrousel discs of order 1 included
in A;. Then the carrousel construction tells us that the set 4\ B; is pointwise
fixed.

Further, let &(j) C A; be a carrousel disc of order 1 defined in the
next 2.6. If there are no carrousel discs of order 1 included in & (i), then the
only fixed point of &(7) is its centre. If (i) contains some carrousel disc of
order 1 (see Remark 1.6), then we decompose & (i) into annuli, since & (i) is
itself a carrousel. For those annuli that contain some carrousel disc of
order 1, we may adapt the present argument, from the beginning of 2.5.

It is easily seen that the set A;,\B;, for i € P, retracts to the subset:

) SN U Hu U 08,
se 4V se M

where 7% ¢! is the set of carrousel discs of order 1 in A; which are not
included in other carrousel discs of the same order and S; is a closed curve
homotopic to a circle which intersects all the discs & € 2% (V.

The picture shows a possible shape of the
retract of the set of fixed points inside
A \B;: the ““thick’’ curves are fixed. (The
situation in the picture corresponds to
nia/mg = n;/mj = R/ My 1)

Then some neighbourhood of the set of fixed points after one turn of the big
carrousel retracts to a set with a finite number of connected components, each

of which being either:

(a) acircle centred at (0, n) or at a centre of some carrousel disc of order 1, or
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(b) a set defined as in (4) or — if case — a similar one in a carrousel disc
of order 1, or

. o . )
(c) a centre of a carrousel disc of order 1 inside A4;, for some i € P, or

(d) the centre (0,n) of the big carrousel disc.

2.6. Definition. Let .# () be a maximal set of indices i € PV such that, if
i\, iye 7 M, then CV = CV.

For any i € .# (), denote by & (i) the carrousel disc of order 1 centred at
the point c(i): = éﬁ” A (D, X {n}). Let a(i) be an arbitrarily chosen point
on the boundary 88 (); it is, by definition, a regular value for /,.

Definition. Let a € (D \0) x {n} and let F, be the fibre of /, over a.
If ¢ is fixed by the carrousel, then the monodromy #, restricts to an action
on H*(F}), denoted by #,.

With these notations, we may formulate the following:

2.7. THEOREM. If fewmx, and [ € Qy, then:

A = A(flu=o) + X [N — AT
i€ f(l)

Proof. The Lefschetz number A(f) splits into a sum, following the
decomposition of the set of fixed points into connected components, see 2.5.
We use a suitable open covering of a set defined as in (4) and then apply the
Mayer-Vietoris exact sequence. The reason of considering the set .7 (D) relies
on the above discution. By a straightforward computation, using also
Lemma 2.1, we get our formula. [

Notice that carrousel discs of order > 2 do not enter in the above formula.

For the computation of A(h,;), A(h,;), we refer to Remarks 3.6. There
will be an example at the end.

3. ZETA-FUNCTION AND CARROUSEL MONODROMIES

3.1. Loosely speaking, each ‘‘important point’’ of the carrousel disc is fixed
after a finite number of turns of the carrousel. We have seen that the set of
fixed points after one turn determines the Lefschetz number A(4,). So the
set of fixed points after k turns is the one responsible for the number A (4 J’f).
It may contain a finite number of circles consisting of regular values for the
map /,. Actually, these circles do not count, as shown by Lemma 2.1 (where
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h s has to be replaced by & }‘). By examining the proof of Theorem 2.1, we get
a slightly more general result:

PROPOSITION. Let k> 1. If niifk Vie{l,...,r}, then A(hf)
:A(h’;l{lzo}). ]

3.2. Definition. Let U C D, x {n} and let ky:= min{k| U is globally
fixed by the k' iteration of the carrousel}. Then k}‘” restricts to an action on
H*(I/;'(U)), which we denote by hy. We call such actions carrousel
monodromies.

3.3. The zeta-function is determined by the set of Lefschetz numbers
A(h/’f), k > 1, as follows (see e.g. [Mi, p. 77], [A’C-2, p. 234]). If the
integers s;, S5, ... are inductively defined by A(hjlf) = X;(xSi, kK = 1, then the
zeta-function of f is given by:
(5) gty = II A —t))y-=rt.
i>1

On the other hand, if Z %) denotes some small enough neighbourhood of the
set of fixed points of the k'™ power of the carrousel, then h}‘ acts on the
cohomology H*(/;'(#®)) and, with the definition above, we get A(hj'f)
= Ah'zw)-

Let’s consider the annulus A4;, as before, in the big carrousel disc. Denote
by h,, the restriction of A, to H*(I;'(A4))).

If x € A; is fixed by some power k of the carrousel, then this power has
to be a multiple of #n; ;. This remark and formula (5) yield the relation:

(©6) (G, (1701 = Gyor (27)

Definition. For any i € {1, ...,r}, denote by &(i)( the carrousel disc
of order 1 centred at an arbitrarily chosen point of C §1) N (D, X {n}), but
fixed once and for all.

Let ZW:={8§=8()DV]ie{l,...,r}, 8()™ is not contained in any
other carrousel disc of order 1}. For § € &£, denote by a(8) an arbitrarily
chosen point on the boundary 95

Then we have the next recursive formula:

3.4. THEOREM. (/(8) =Ty, _o (0" I Chn@min) - C;&I(S)(t"f,l).
se LW

Proof. We apply Mayer-Vietoris exact sequences to the covering of the
carrousel disc described before. Since the fixed circles do not count for the
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Lefschetz numbers, we get that the zeta-function is a product over all different
annuli, each factor being of the form (, A,-(t)'

We employ the notations in 2.5. Notice that the set % " is well defined
for any i e {1, ...,r}. One can easily show that A, retracts to the subset
Fii=8u Usc "8, hence Ch/’j{;l(l‘) = Cny, (D).

If 8 € 1, then notice that there are n;; carrousel discs in 4; of the
same radius as §; if §,, 8, are any two of them, then Z;hél(t) = Chéz(t).

An open covering of #; and a Mayer-Vietoris argument lead to the
conclusion:

Chf%—,i(f) =[] [Ca1"r - [Cage (D170

66:?(1)

Using (6), our formula is now proved. Notice that the factor { /i {1:0}(0
corresponds to the disc A, defined in 1.8. [

It is not hard to figure out how the process started in the proof above may
continue. We apply Theorem 3.4 with /4, replaced by Az and get a formula
for the zeta-function C hé(z‘), for any & € M. In a finite number of steps,
going through the carrousel discs of order 1,2,...,m, where
m:= max{g;|ie{l,...,r}}, we get a formula for { ;(¢). To write it down,
we need just the following notations.

Definition. Let 8(i)®¥) denote the carrousel disc of order k centred
at a fixed (arbitrarily chosen) point of the set éﬁk) N Dy X {n}). (This
later set contains exactly n; ;- - n; ; points). Denote F(A"):= {S()® |i
e{l,..,r},kell,.., m}}.

For any 6 € ¥ (A’), denote by c(8) its centre and by a(8) an arbitrarily
chosen point on 95.

Let § € € (A'), where & = 8§(i)®, for some indices i/ and k as above.
Then define n(d):=n; - n; x.

Thus we get the following general zeta-function formula:

3.5. THEOREM. {,(1) = Gy o (D) - [T Gy @®) - ¢t (n®) . O

- a(8)
§e Z)

By using a decreasing induction, { ,(¢) will become finally a product of
integer powers of cyclotomic polynomials.

3.6. Remarks. (a) The points a(8), 6 € ¥ (A’) may also be defined as
follows (the precise details are left to the reader):
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Let & =8()® and let C® be (formally) defined by the equation
(see (3)): u; = g Amin/ma 4 «+o 4 Y6 by AmerD/miinik Then define
a curve G; x, by slightly perturbing in this equation just the last coefficient
b.1,> such that G; , # (Afj(-k), Vje{l,...,r}. For k = g;, we cut the Puiseux
expansion at a sufficiently high power of A and modify the last coefficient.

It follows that @ (8(i)®) may be identified to the point in G; , N (Dy X {N})
which is in the closest neighbourhood of ¢(8(i)®).

(b) Let 86:= 8(i)®. Then c(d) is a regular value for the map /, if and
only if, for any j € {1, ..., r} such that (A?ﬁ.k) = CA*Ek), we have g; > k. It is
possible that a(8) cannot be chosen arbitrarily close to c¢(8), see also
Remark 1.6.

(c) The carrousel monodromies /4.4, A, may be defined as
monodromies of functions. This remark was used by L€ in his proof of the
Monodromy Theorem [Lé-1], see also [Lo]. For instance, if & = §(i/)® and
(u® (), A(t)) is the parametrization of (}Ek) defined in 1.5, then the
pull-back diagram:

(X{,0) —+ (X, 0)
(7) 79 le

]

(C,0) - (C2,0)

defines a space (X{“,0) and a function f on it. Then hl4 is the
monodromy of f Ek).

3.7. We illustrate the formula on the following particular case: any
component A; has just one Puiseux pair, i.e. g;=1,Vie{l,...,r}. We
assume, for the sake of simplicity, that the sets of components of I'(/, f) and
A ([, f) are in one-to-one correspondence.

In this case, we have C" = A; and a carrousel disc §(i)® is an
arbitrarily small disc centred at c(8())®) e A; n (Dy X {n}), which is
pointwise fixed by the n; ;™ iterate of the big carrousel. It follows that the
point a(8(/)V) can be chosen arbitrarily close to ¢(8(i)("). The centres
c(8), 8 € € (A") are critical values for the map /,. Let ¢(i) denote a fixed,
arbitrarily chosen point of the set A; N (Dy X {n}). Then €(A’) can be
identified to the set {c(i)|ie{l,...,r}}. With these notations, the
zeta-function formula becomes

®) 80 =@ T Gg, e,

ie{l,..r
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where Al H* (1, '(c(3)), Iy '(a(8))) © is the relative monodromy and its
zeta-function is Cyreh (1) = Gz (D Gy, (1)- One also gets A(S) = Alfju=o)
+ Xie(l,rtin = 1A(h£eili))-

By standard arguments, H*(I/;'(c(d)), [, '(a(8))) is_isomorphic to
the direct sum of reduced cohomologies @uelu—l(c(é))r\FH "I(F;), where
F':=B,.n ;' (a(d)) is the local Milnor fibre and B, . is a Milnor ball of
the isolated singularity at v. Let d;:= # I, '(c(i)) n T.

A pointv e [/ '(c(i)) n T goes, after n; ; complete turns of the carrousel,
to v’ el (c())) nT and v" # v if n; > 2. After exactly n; d; turns, the
point v is fixed.

It becomes clear how the relative monodromy acts on the above direct sum;
by similar arguments as those in [Si, p. 192], one shows that the matrix
of hf(li) may be assumed to have the following block decomposition

000 . . . 0 VTrd]
I 0. . .0 0
0 I 0
. .0 .
0 . . . 01 0o

where, at some fixed v(i) € I; '(c(i)), I is the identity matrix on f}'(F;(,-)),
T; is the horizontal monodromy of the transversal singularity and V; is the
vertical monodromy of the local system on I';,\{0}, with fibre H “(Foi)-
Then {u (1) = T odet[l — ¢4V, T71%  HI(F, )], Finally, our
formula looks as follows:
©) Cr(0)

=G - T1 TI detl — gmadiV Ty HI(E, )] D7

ief{l,..,r} j=0

3.8. This latter one may be easily specialized to the Siersma’s formula
[loc. cit.]. Let A, be the most exterior annulus and assume that the
components of A which cut 4,, are Ay, ..., A, and they have just one Puiseux
pair. Denote D, _;:= Dy X {n}\A,,. By our approach we get {,(¢)
= Cnp,,_ () " Micyr, . s Carel (2700).

Let then g be a function with 1-dimensional singular locus
Y= Ujeq,.,sp=i and let f:= g + IX, for some / € Q,, with K € N large
enough. Then f is an isolated singularity and, as shown in [Si], one may
identify the monodromy of the Milnor fibre F, to Ap__,. The degree of the
covering X£,\{0} > A;\{0} is d;. Then one gets [Si, p. 183]:

(10) Cr() =0ty I det[l — tkaiy, . T (-1dimx.0

ie{l,..s}
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3.9. Example. Let X:={x3+ y*+ 7> =0} C C? and let f € mx ¢ be the
function induced by f € Mc3,o, f = x. Consider the linear function /
induced by [ = y. Then [ € Q. We get that A(/, f) is irreducible and has
the Puiseux parametrization: / = oav3, A = v*, where a is a nonzero constant,
easy to determine.

Let ce A(Lf)ynm(Dy x{n}) and let a ¢ A, f) n (D, X {n}) be a
neighbour point of c.

The monodromy 4, can be identified to the monodromy of the function
fa: (X4, 00> (C,0) induced by f,=v, where X,:={x =04,y =03,
z=1"2yv*} and y is a 3-root of — 1. We get (. (¢) = (1 — )%, hence
Caret = (1 — £)2.

By using (8), the final result is { ,(¢) = (1 —¢) ~3(1 —%)2. We also get
A(Sf) =3,

Notice that there is another way of computing the zeta function
in this example, by using the usual C*-action on X, which fixes the
zero set { f = 0}. It follows that the monodromy A, of f is equal to
the 3™ power of the monodromy 4, of the function g:(C2,0)— (C,0),
g=y*+7z3 and Chz(z‘) can be comp~uted frgm the eigenvalues of
h,. If we change the above function f into f;:= x + y, then the set
{f, =0} is no more invariant under the above-mentioned C*-action.
The computations for the zeta-function of hy are slightly more
complicated, since we get two Puiseux pairs, with n, =1, n;, = 3.
This time, the result is { , (#) = (1 —#)~1(1 —=#3)-1(1 - ¢°).
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