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214 E. ARTAL-BARTOLO

§2. COMBINATOIRE ET INFINI

Le résultat (1.2) de Thom a été précisé dans [Lé-H4]; les auteurs y donnent
la description précise de ’ensemble minimal S(f) pour lequel fjc\s(s) est une
fibration.

Notons C(f) ’ensemble des valeurs critiques de f,
0 0
C(f) = {toeC l 3(x0, yo) € f ~'(%) tel que BZ(XO,}’O) = a—f(xo,yo) = 0} :
X Yy

2.1. DEFINITION. On dit que 1, € C est une valeur réguliére a
Pinfini s’ existe & >0 et K C C? compact tels que si

D} s:={teC:|t—1]|<38},

alors la restriction f|: f “I(Dfo,s) N (CZ\K)—>D:§0’8 est une fibration
différentiable triviale. Dans le cas contraire, on dit que 1, est une valeur
irréguliere a Pinfini. L’ensemble des valeurs irrégulieres a [’infini sera
noté So(f).

2.2. THEOREME. [Lé&-H4] S(f) := C(f) u S»(f) est ’ensemble minimal
qui vérifie (1.2).

2.3. Nous rappelons la description de S, (f) de [Lé-Ha]. Soit d : = deg(f)
et F(X,Y,Z)eClX,Y,Z] ’homogénéis¢ de degré d de f,F(X,Y, Z)
=24 (X/Z,Y/Z).

Géométriquement, nous venons de choisir une compactification C? C P?
ou L, := {[X:Y:Z] e P2|Z = 0} est la droite a I’infini. La compactifica-
tion des fibres de f donne une famille {C;}, . ¢ de courbes projectives planes,
ou F(X,Y,Z) — tZ¢ = 0 est I’équation de C,, pour ¢ € C.

L’ensemble Z,.(f):= Cin L, ={[X:Y:0]|F(X,Y,0) =0} est indé-
pendant de la valeur de 7, c’est-a-dire, toutes les courbes C, ont les mémes
points a I’infini.

Soit P € Z,(f); alors, nous avons une famille de germes en P de singula-
rités de courbes planes {(C,;, P) C (P?, P)};c. En dehors d’un ensemble fini
de valeurs de ¢, cette famille est équisinguliére, c’est-a-dire, cette famille
posséde un type topologique générique. Notons Sp( f) ’ensemble des valeurs
de ¢ € C pour lesquelles le type topologique de (C; , P) C (P2, P) n’est pas
générique.

Alors, S.(f) = U  Sp(f).

Pe Z%(f)
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2.4. Exemple. [Broughton] Soit f:= X (XY — 1); il est facile de voir que
C(f) = 0. Nous avons Z.(f)=1{[1:0:0],[0:1:0]}. Pour [0:1:0], la
famille de singularités est définie par les équations {Y — Z% — ¢tZ3 = 0}, ¢ c;
cette famille est équisinguliére et Sp.1.01(f) = 0.

Pour [1:0:0], la famille de singularités est définie par les équations
{X? — XZ% — tZ3 = 0},cc; pour t # 0 la singularité est un point cuspidal
ordinaire et pour ¢=0 il s’agit d’un tacnode. Par conséquent,
S[1:0:0](f)={0}- _

Dans ce cas S(f) = {0}; nous remarquons que la courbe f ~!(0) est lisse
mais pas générique.

Dés maintenant et jusqu’a la fin de I’article, nous ne travaillerons qu’avec
des polynomes a singularités isolées.

La description de [L&-H4] nous améne a étudier ce qui se passe a I’infini.
Il est facile de voir que pour un polynéme f toutes ses fibres génériques, voire
toutes les fibres f ~1(¢) pour t € C\S.(f), ont le méme entrelacs a I’infini.

2.5. DEFINITION. Soit fe C[X, Y]; 'entrelacs générique de f, noté
K, C S3, est [Dentrelacs a Uinfini de f-'(t) pour e C\Su(f)
quelconque. Les entrelacs spéciaux de [f sont les entrelacs a l’infini des
fibres f ~1(t) pour te S.(f).

2.6. DEFINITION. L’entrelacs total de f est [I’entrelacs a linfini de la

courbe  d’éguation (fXY-1t) J] (f&X,Y)-1t)=0, avec
t € Seo (f)

to € C\S.(f) quelconque. Cet entrelacs est muni d’une partition en sous-
entrelacs: un entrelacs générique et + S..(f) entrelacs spéciaux.

Les premiers rapports entre les entrelacs a I'infini et la topologie des
polyndmes se trouvent dans les résultats suivants:

2.7. THEOREME [Neumann2]. Soient f,ge C[X,Y], f,e€ C\S(f) et
so € C\S(g). Alors, les couples (C2,f -'(t)) et (C2,g-!(sy) sont
homéomorphes si et seulement si les couples (S3, K ) et (S3,K;) lesont.

En particulier, le plongement des fibres génériques peut &tre exprimé a
I’aide d’invariants combinatoires.

2.8. DEFINITION. Soient f,ge C[X, YI; on dit que f et g
sont topologiquement conjugués a Pinfini, nozé f~- g, S’ existe
des compacts L;,L, C C et L?,L%C C?, avec des homéomorphismes
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w:CA\L;—> C\L; et ¢:C\L;— C\L, fels que le diagramme suivant
commute.

C3\L2 > CN\L2.
5l gl

o

C\L; - C\L, .

2.9. THEOREME [Fourrier]. Soient f,g e C[X, Y] et soient

r s
Ki=K,u UK, e K,=K,UK!
, i=1 i=1
les entrelacs totaux de f,g (K, et K, sont les entrelacs génériques,
K } et Ké sont les entrelacs spéciaux). Alors, f~« g si et seulement
si r=s et il existe un homéomorphisme orienté h:S3— S> tel que
hK) =K, et h(Ky)=KP,i=1,..,r, on o est une permutation
de {1,...,r}.

Ce théoreme montre que les classes d’équivalence de ~, sont aussi
déterminées par des invariants combinatoires.

§3. COMBINATOIRE ET CONJUGAISON TOPOLOGIQUE

Nous allons définir précisément la combinatoire des polyndmes et étudier
son rapport avec les classes d’équivalence de ~.

Soit fe C[X, Y] et soit S(f) C C ’ensemble de (2.2). Alors, la classe
d’isomorphie de la fibration f): C>\f - (S(f)) = C\S(f) est bien
évidemment un invariant topologique de f. Les renseignements sur la fibre
générique sont entiérement contenus dans I’entrelacs générique, d’apreés (2.7).
Les renseignements sur la monodromie de la fibration autour des valeurs dans
S.(f) peuvent étre déduits de (2.9); ce résultat contient aussi le plongement
en dehors d’un compact des fibres irréguliéres a I’infini.

Pour connaitre localement la monodromie autour des valeurs dans
C(f), il faut connaitre le type topologique des singularités affines de f.
En effet, soit (xg, yy) € C? un point critique de f de valeur critique #,. On
prend 0<e<1l et 0<8<g; alors, si 0<|t~—1f|<$§, Iespace
F=1) n{(x,y) € C2:|x — x0 |2 + |y — yo|* < €2} est une fibre de Milnor
du germe de singularité de courbe plane (f ~!(%), (xo, ¥o)). En plus, une
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