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It remains to deduce the inequality (2) from (2.3). If the inequality (2)

holds for some power series A(z) it will also hold for A(z*), at the cost of
1

replacing K by K 5;. By (2.3) we are thus reduced to showing that the power
series

(o]

Y qgzi=[] A+29)

i=0 i=0
satisfies (2). But this is an immediate consequence of a theorem of Hardy and
Ramanujan [10]. [J

COROLLARY OF PROOF. If G satisfies the hypotheses of Theorem 2.1
(2) then for some k € N,

o> [ n+@H1. D

i=1

‘3. ELLIPTIC SPACES

In this section we establish the ellipticity of the spaces listed in the
introduction.

3.1. Finite simply connected H-spaces, X.

Because X is an H-space, H.(Q.X; F,) is commutative, all p. Since it has
finite depth [3; Theorem A] it is elliptic [7; Prop. 3.2]. Hence X is elliptic.

- 3.2. Simply connected homogeneous spaces, G /| H.

We may suppose that G is simply connected, and hence elliptic by §3. The
fibration G — G/H — BH loops to the fibration QG - Q(G/H) —» H in
which m; (H) acts trivially in H«(QG; F,) [1; Lemma 5.1]. Thus we can use
the Serre spectral sequence to deduce polynomial growth for
H.(Q(G/H);F,) from the same property for H4(QG;F,).

3.3. Fibrations F > X — B with F, B elliptic.

Here all spaces are simply connected and we can apply the Serre spectral
sequence to deduce that H 4 (X; Z) is concentrated in finitely many degrees, and
finitely generated in each. Hence X has the weak homotopy type of a finite
CW complex. Loop the fibration F— X — B and use the fact that
Hy,(QF;F,) and H.(QB;F,) grow polynomially to deduce the same
property for H4(QX;F,).



30 Y. FELIX, S. HALPERIN AND J.-C. THOMAS

3.4. Simply connected Poincaré complexes X with H*(X;F,) at most
doubly generated.

Suppose p # 2 and H = H*(X; F,) contains an element of odd degree.
Then it has an odd generator o. Using Poincaré duality it is easy to see that
there are only three possibilities for the algebra H:

H=Aoa or Aoc@AB or Aa®@F,[B]l/B*.

In each case a simple, classical computation [11] produces Tor#(F,, F,) and
shows that it grows polynomially. Since the Eilenberg-Moore spectral sequence
converges from Tor#(F,,F,) to H*(QX;F,), H*(QX;F,) also has this
property.

In all other cases (p = 2 or H concentrated in even degrees) H is a
commutative local ring in the classic sense. Because H satisfies Poincaré
duality it is a Gorenstein ring. Now a theorem of Wiebe [12; Korollar p. 268]
asserts (because H has at most two generators) that H is a polynomial algebra
divided by a regular sequence. It is thus easy (and classical [11]) to compute
Tor#(F,,F,), and deduce that it grows polynomially. Hence so does
H.(QX;F),).

3.5. Simply connected Dupin hypersurfaces E in S"*!.

In [9; Table 2.1] are listed the possibilities for H4 (E; Z). We divide these

into three cases, using the notation of [9].

Case (a): E has the same integral homology as S¥ or as S¥ x S'.

In this case Poincaré duality shows that £ has the same integral cohomo-
logy ring as S* or as S* X S/, and we can apply 3.4.

Case (b): E has the rational homotopy type of As(2), As(4), A;(8), As(2) or
Ag(2).

In these cases the calculations of [9; §6] show explicitly that the ring
H*(E;Z) is torsion free and generated by two elements. Thus each
H*(E; F,) is doubly generated, and we can apply Wiebe’s result as in 3.4.
Case (c): E has the integral homology of S* x S' X Sk+! with k < I.

We need, in this case, to recall from [9; § 2] that there are linear sphere
bundles

Sk>E—>B and S'—E- B,

with By, B; simply connected focal submanifolds of S”+!. Moreover if
Dy, D; denote the corresponding disk bundles with boundary E then
S”+1 = DO kE.'J Dl .
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Fix p >0 and consider the Serre spectral sequence for the fibra-
tion Sk — E — B, with coefficients in F,. If this fails to collapse then
H*(mo): H*(By; F,) = H*(E; F,) is surjective. Since / > k it is always true
that H*(m,) is surjective. Choose classes o € H*(By; F,), B € H*(B;; F,)
mapping to the same non-zero class in H*(E;F,). The Mayer-Vietoris
sequence for the decomposition S"*! = D, LEJ D, then gives a class

Yy € H*(S"+1; F,) restricting to o and B, which is absurd.

Thus the spectral sequence for S¥ — E — B, collapses and so H 4 (Bo; F,)
= H,(S'x S'**;F,). Using Poincaré duality for B, we see that H*(By; F,)
and H*(S! x §'**; F,) are isomorphic as graded algebras. Thus B, is elliptic
by 3.4 and E is elliptic by 3.3.

3.6. Simply connected closed manifolds M with a smooth action by a
compact Lie group G, having a simply connected codimension one orbit.

Here we may assume G is connected. Let the orbit be G/K, and convert
the inclusion of G/K into a fibration F — G/K — M. From [9; Table 1.5] we
see that for any p, dim H;(F; F,) < 2, all i. Thus applying the Serre spectral
sequence to the fibration Q(G/K) > QM — F and using 3.1 for G/K we see
that H, (QM;F,) grows polynomially.

3.7. Simply connected manifolds M # N with each of the rings
H*(M;Z), H*(N; Z) generated by a single class.

By Van Kampen’s theorem both M and N are simply connected, and so
their fundamental cohomology classes are not torsion. Since each ring is
monogenic, H*(M; Z) and H*(N; Z) are torsion free. Thus H*(M;F,) and
H*(N;¥,) are also monogenic, and so H*(M # N; F,) is doubly generated.
Now apply 3.4.
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