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It remains to deduce the inequality (2) from (2.3). If the inequality (2)

holds for some power series h(z) it will also hold for h(zk), at the cost of
i

replacing K by K2k. By (2.3) we are thus reduced to showing that the power
series

Ê h? n (i+z')
i 0 i 0

satisfies (2). But this is an immediate consequence of a theorem of Hardy and

Ramanujan [10].

Corollary of proof. If G satisfies the hypotheses of Theorem 2.1

(2) then for some k e N,

oo

G(Z) > n [! + («*)'] •
c

Z 1

'3. Elliptic spaces

In this section we establish the ellipticity of the spaces listed in the

introduction.

3.1. Finite simply connected H-spaces, X.

Because X is an H-space, H*(£IX\ ¥p) is commutative, all p. Since it has

finite depth [3; Theorem A] it is elliptic [7; Prop. 3.2]. Hence X is elliptic.

3.2. Simply connected homogeneous spaces, G // H.

We may suppose that G is simply connected, and hence elliptic by §3. The
fibration G -> G/H BH loops to the fibration QG-> Q(G/H) -> H in
which 7ii(H) acts trivially in i/*(QG; Fp) [1; Lemma 5.1]. Thus we can use
the Serre spectral sequence to deduce polynomial growth for
H*(Q(G/H); Fp) from the same property for H*(QG;1?P).

3.3. Fibrations F - X -> B with F, B elliptic.

Here all spaces are simply connected and we can apply the Serre spectral
sequence to deduce that H* (X; Z) is concentrated in finitely many degrees, and
finitely generated in each. Hence X has the weak homotopy type of a finite
CW complex. Loop the fibration F -> X B and use the fact that
H*(QF; ¥p) and H*(QB; ¥p) grow polynomially to deduce the same
property for H*(QX; ¥p).
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3.4. Simply connected Poincaré complexes X with H*(X; J?p) at most
doubly generated.

Suppose p 4=- 2 and H H*(X; F^) contains an element of odd degree.

Then it has an odd generator a. Using Poincaré duality it is easy to see that
there are only three possibilities for the algebra H:

H Aa or Aa (x) Aß or Aa (x) F^[ß]/ß*

In each case a simple, classical computation [11] produces Torf/(F^, Fp) and
shows that it grows polynomially. Since the Eilenberg-Moore spectral sequence

converges from Tor77 (F^, Fp) to H*(QX; Fp), H*(QX; Fp) also has this

property.
In all other cases (p 2 or H concentrated in even degrees) H is a

commutative local ring in the classic sense. Because H satisfies Poincaré

duality it is a Gorenstein ring. Now a theorem of Wiebe [12; Korollar p. 268]

asserts (because H has at most two generators) that H is a polynomial algebra
divided by a regular sequence. It is thus easy (and classical [11]) to compute
Tor77 (F^, Fp), and deduce that it grows polynomially. Hence so does

H*(QX;FP).
3.5. Simply connected Dupin hypersurfaces E in Sn + X.

In [9; Table 2.1] are listed the possibilities for H*(E; Z). We divide these

into three cases, using the notation of [9].

Case (a): E has the same integral homology as Sk or as Sk x Sl.

In this case Poincaré duality shows that E has the same integral cohomo-

logy ring as Sk or as Sk x Sl, and we can apply 3.4.

Case (b): E has the rational homotopy type of ^43(2), >43(4), ^43(8), ^44(2) or
A6(2).

In these cases the calculations of [9 ; § 6] show explicitly that the ring
H*(E\ Z) is torsion free and generated by two elements. Thus each

H*(E; ¥p) is doubly generated, and we can apply Wiebe's result as in 3.4.

Case (c): E has the integral homology of Sk x S1 x Sk+l, with k < I.

We need, in this case, to recall from [9 ; § 2] that there are linear sphere
bundles

Sk E~> B and Sl E~+ Bx

with BQiB\ simply connected focal submanifolds of Sn + l. Moreover if
D0, D\ denote the corresponding disk bundles with boundary E then

S" + l D0 U Di.
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Fix p ^ 0 and consider the Serre spectral sequence for the fibra-

tion Sk^E-+B0 with coefficients in Fp. If this fails to collapse then

Hk(n0):Hk(B0;¥p) Hk(E;Fp) is surjective. Since / > k it is always true

that Hk(711) is surjective. Choose classes a e Hk(B0; Fp), ß e Hk{Bx ; Fp)

mapping to the same non-zero class in Hk(E;Fp). The Mayer-Vietoris

sequence for the decomposition Sn + l A) y A then gives a class

y e Hk(Sn + l;Fp) restricting to a and ß, which is absurd.

Thus the spectral sequence for Sk ->• E -> B0 collapses and so H*(B0; Fp)

H*(Sl x Sl+k; Fp). Using Poincaré duality for B0 we see that H*(B0; Fp)

and H*(Sl x Sl+k; Fp) are isomorphic as graded algebras. Thus B0 is elliptic
by 3.4 and E is elliptic by 3.3.

3.6. Simply connected closed manifolds M with a smooth action by a

compact Lie group G, having a simply connected codimension one orbit.

Here we may assume G is connected. Let the orbit be G/K, and convert
the inclusion of G/K into a fibration F -> G/K - M. From [9; Table 1.5] we

see that for any p, dim if/(F; Fp) < 2, all i. Thus applying the Serre spectral

sequence to the fibration Q(G/K) - QM F and using 3.1 for G/K we see

that ¥p) grows polynomially.

3.7. Simply connected manifolds M#N with each of the rings
H*(M; Z), H*(N; Z) generated by a single class.

By Van Kampen's theorem both M and N are simply connected, and so

their fundamental cohomology classes are not torsion. Since each ring is

monogenic, H*(M; Z) and H*(N; Z) are torsion free. Thus H*(M; ¥p) and

H*(N; Fp) are also monogenic, and so if*(M# TV; Fp) is doubly generated.
Now apply 3.4.
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