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L'Enseignement Mathématique, t. 39 (1993), p. 211-224

COMBINATOIRE ET TYPE TOPOLOGIQUE
DES APPLICATIONS POLYNOMIALES DE C2 DANS C

par Enrique Artal-Bartolo

§ 1. Introduction

Nous étudions dans cet article des problèmes liés à la classification

topologique des applications polynomiales et des courbes affines planes. Nous

allons décrire un invariant combinatoire des applications polynomiales
C2 — C. Nous utilisons ces résultats pour répondre négativement à une

conjecture qui se trouve dans [Neumann2] qui affirme que le type topologique
des courbes affines planes non singulières est déterminé par leur entrelacs à

l'infini. Nous commençons par donner des définitions et préciser les problèmes
et les résultats.

Considérons C [X, Y] muni de la relation d'équivalence définie comme suit:

Soient f,ge C[X, Y]; on note /, g: C2 -> C les applications polynomiales
qu'ils définissent. Nous disons que / et g sont topologiquement conjugués,
noté f ~ g, s'il existe des homéomorphismes iy: C2 - C2 et (p: C C tels que
le diagramme suivant commute,

ur

c2 c2

fI « I

De la même façon, soient Cu C2 deux courbes affines planes, i.e,
il existe f,geC[X,Y] tels que C, =/-'(()) et C2 g-'(0). Nous
disons que les deux courbes sont topologiquement équivalentes s'il
existe un homéomorphisme \|/: C2 -»• C2 tel que vp(Ci) C2.

Nous rappelons la définition d'entrelacs à l'infini d'une courbe
affine plane, qu'on trouve dans [Neumann-Rudolph], Pour 0,
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212 E. ARTAL-BARTOLO

nous notons SR : {(*, y) e C21 | x |2 + | y |2 R2}. Soient fe C[X, Y]
et C:=/_1(0). Pour R > 0 suffisamment grand, la courbe C (de
codimension réelle 2 dans C2) intersecte transversalement SR; par conséquent

Kr : C n SR est une sous-variété compacte orientée sans bord de

codimension 2 dans SR. C'est-à-dire, il s'agit d'un entrelacs dans SR qui est

une sphère de dimension 3. Par transversalité, le type topologique du

couple (SRiXR) ne dépend pas de R (s'il est suffisamment grand):

1.1. Définition. [Neumann-Rudolph]. Soient f e C[X9 Y], C := /_1(0)
et R comme ci-dessus. On dit que (S3,KC) est l'entrelacs à l'infini de

la courbe C\ s'il a le même type topologique que (SR, KR).

Il est démontré dans [Neumann-Rudolph] que deux courbes topolo-
giquement équivalentes possèdent des entrelacs à l'infini topologiquement
équivalents; ils démontrent aussi que la sphère ronde SR peut être remplacée

par des sphères de dimension 3 suffisamment grandes, plongées raisona-
blement dans C2, sans changer le type topologique de l'entrelacs obtenu par
l'intersection avec la courbe C.

Les entrelacs à l'infini des courbes affines planes sont des entrelacs toriques
itérés, voir [Neumann-Rudolph], et sont codés par un graphe pondéré, voir
[Eisenbud-Neumann].

Aux applications polynomials /: C2C sont associées des fibrations
^f°° localement triviales:

1.2. Théorème [Thom]. Soit /:C2->C une application polyno-
miale. Alors, il existe un ensemble fini S C C tel que la restriction

f\ : C2\/ ~1 (S) -> C\S est une fibration différentiable localement triviale.

Le théorème de Thom est valable en toute dimension. Nous noterons
S : S(f) l'ensemble minimal pour lequel la conclusion du théorème est

vraie.

1.3. Définition. Soit c e C\S; on dit que f -1(c) C C est une fibre
générique de f. Le type topologique du plongement f ~1 (c) C C ne

dépend pas de c e C\S, à cause du théorème (1.2).

Le problème de la classification topologique des courbes affines planes a

été partiellement résolu dans [Neumann 2]: Deux courbes génériques sont

topologiquement équivalentes si elles possèdent des entrelacs à l'infini
homéomorphes. Une courbe C est générique s'il existe f e C[X, Y] tel que
C f ~l(0) est une fibre générique de /. Les courbes génériques sont lisses,
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mais il existe des courbes lisses qui ne sont pas génériques; nous en verrons

des exemples. W.D. Neumann conjecture que le résultat reste vrai si l'on

suppose seulement que C est lisse. Nous donnons dans cet article des exemples

de courbes lisses ayant le même entrelacs à l'infini qui ne sont pas topolo-

giquement équivalentes.

L'autre problème traité dans cet article est celui de donner des invariants
combinatoires pour les classes d'équivalence de la relation ~ définie ci-dessus.

Par des raisons techniques nous allons restreindre l'étude des invariants
combinatoires aux polynômes à singularités isolées, i.e., aux f e C[X, Y] tels

que il n'y a pas de facteur carré dans la décomposition en facteurs irréductibles
de f(X, Y] - t, W e C.

L'idée clé est la suivante: nous essayons de décrire de façon combinatoire
l'ensemble minimal S(f de (1.2) aussi bien que la fibration f\. Pour ce

faire, nous allons associer à chaque polynôme une courbe projective plane Cf
comme suit:

L'ensemble S(f) minimal est décrit dans [Lê-Hâ]. Nous en rappelons
l'essentiel dans la section §2. Nous considérons C2 plongé dans P2. Pour
chaque y e S(f), soit Cs l'adhérence de f ~l(s) dans P2. Alors la courbe Cf
associée à / est la courbe projective plane dont les composantes irréductibles
sont: la droite à l'infini, l'adhérence d'une fibre générique et les courbes Cs

pour s e S(f). La résolution des singularités de Cf fournit un graphe
pondéré qui contient des renseignements sur la fibration associée à / ; la
comminatoire de / est la donnée de ce graphe pondéré (modulo une relation
d'équivalence basée sur le plumbing calculus de [Neumann 1]). Des résultats
de [Neumann 2] et [Fourrier] incitaient à penser que cette combinatoire peut
être un invariant complet du type topologique de /. Nous allons démontrer

que ce n'est pas le cas.

Dans la section suivante, nous allons énoncer les résultats de [Neumann2]
et [Fourrier] qui ont inspiré ce travail. Nous rappelons aussi le résultat de

[Lê-Hâ] qui précise (1.2).

La section §3 sert à décrire proprement la combinatoire d'un polynôme;
nous énoncerons aussi le résultat qui affirme que la combinatoire n'est pas un
invariant complet pour le type topologique des applications polynomiales, dont
la démonstration sera donnée dans la section §2.

Dans la section §4, nous énonçons des résultats qui se trouvent dans [Artal]
sur les couples de Zariski de courbes projectives planes. Cette section finira
avec le contre-exemple à la conjecture de Neumann.
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§2. COMBINATOIRE ET INFINI

Le résultat (1.2) de Thom a été précisé dans [Lê-Hâ] ; les auteurs y donnent
la description précise de l'ensemble minimal S(f) pour lequel f\c\su) est une
fibration.

Notons C(f) l'ensemble des valeurs critiques de /,

C(f) 3(*o,To) tel que (x0,y0) — (x09y0) 0
dx dy

2.1. Définition. On dit que t0 e C est une valeur régulière à

l'infini s'il existe ô > 0 et K C C2 compact tels que si

^2
DtQi § : {te C: t - t0 I < 0}

alors la restriction f\ :fr\ (C2\K)D]o h est une fibration
différentiable triviale. Dans le cas contraire, on dit que t0 est une valeur

irrégulière à l'infini. L'ensemble des valeurs irrégulières à l'infini sera
noté Sœ(f).

2.2. Théorème. [Lê-Hâ] S(f) := C(f) u Sœ(f) est l'ensemble minimal
qui vérifie (1.2).

2.3. Nous rappelons la description de S^if) de [Lê-Hâ]. Soit d : deg(/)
et F(X, Y, Z) e C[X, Y, Z] l'homogénéisé de degré d de f,F{X,Y,Z)
:= Zdf(X/Z3 Y/Z).

Géométriquement, nous venons de choisir une compactification C2 C P2

oùloo : {[X: Y: Z] e P21 Z 0} est la droite à l'infini. La compactification

des fibres de / donne une famille {Ct}teC de courbes projectives planes,
où F(X, Y, Z) - tZd 0 est l'équation de Ct, pour te C.

L'ensemble .^U/) : Ct n {[X : Y : 0] | F(X, Yy 0) 0} est

indépendant de la valeur de t, c'est-à-dire, toutes les courbes Ct ont les mêmes

points à l'infini.
Soit P e ^oo(/); alors, nous avons une famille de germes en P de singularités

de courbes planes {(Ct,P) C (P2, P)}t e c • En dehors d'un ensemble fini
de valeurs de t, cette famille est équisingulière, c'est-à-dire, cette famille
possède un type topologique générique. Notons SP(f) l'ensemble des valeurs
de t e C pour lesquelles le type topologique de (Ct P) C (P2,P) n'est pas

générique.

Alors, S»(/) - U SP(f).
P e .^oo (/)
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2.4. Exemple. [Broughton] Soit / := X(XY - 1); il est facile de voir que

C(f) 0. Nous avons ^»(f) { [1 : 0 : 0], [0 : 1 : 0]}. Pour [0 : 1 : 0], la

famille de singularités est définie par les équations {Y - Z2 - tZ3, 0}, eC;

cette famille est équisingulière et 5[0:i:0](/) 0-

Pour [1:0:0], la famille de singularités est définie par les équations

{X2 - XZ2 - tZ3 0},eC; pour t ± 0 la singularité est un point cuspidal
ordinaire et pour t 0 il s'agit d'un tacnode. Par conséquent,

Vo:0](/) {0}.
Dans ce cas S(f) {0}; nous remarquons que la courbe / _1(0) est lisse

mais pas générique.
Dès maintenant et jusqu'à la fin de l'article, nous ne travaillerons qu'avec

des polynômes à singularités isolées.

La description de [Lê-Hâ] nous amène à étudier ce qui se passe à l'infini.
Il est facile de voir que pour un polynôme / toutes ses fibres génériques, voire
toutes les fibres pour t e C\Soo(/), ont le même entrelacs à l'infini.

2.5. Définition. Soit fe C[X, Y]; l'entrelacs générique de /, noté

Kf C S3, est l'entrelacs à l'infini de f~l(t) pour t e C\£<»(/)
quelconque. Les entrelacs spéciaux de f sont les entrelacs à l'infini des

fibres f ~1 (t) pour t e Sœ (/).

2.6. Définition. L'entrelacs total de f est l'entrelacs à l'infini de la
courbe d'équation (/(X, Y) - t0) JJ (f(X, Y) - t) 0, avec

t e Soo (f)
t0 e C \S„(f)quelconque. Cet entrelacs est muni d'une partition en sous-
entrelacs: un entrelacs générique et + S„(f entrelacs spéciaux.

Les premiers rapports entre les entrelacs à l'infini et la topologie des

polynômes se trouvent dans les résultats suivants:

2.7. Théorème [Neumann2], Soientf,geC[X, Y], t0 e C\S(f) et
s0eC\S(g). Alors, les couples (C2,/-'(f0)) et (C2, g -1 (50) sont
homéomorphes si et seulement si les couples (S3, Kf) et 3, le sont.

En particulier, le plongement des fibres génériques peut être exprimé à
l'aide d'invariants combinatoires.

2.8. Définition. Soient f, g e C[X, Y] ; on dit que f et g
sont topologiquement conjugués à l'infini, noté f~œg, s'il existe
des compacts Lj, Llg C C et L2f,L2g C C2, avec des homéomorphismes
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if/: C2\Lj-^ C2\L2g et cp: C\£* tels que le diagramme suivant
commute.

C2\Lj^f\ig,C\L)^C

2.9. Théorème [Fourrier]. Soient f, g e C[X, Y] et soient

r s

Kf=Kfu Ui; et Kg Kg KJ Klg
i 1 / 1

les entrelacs totaux de f, g (Kf et Kg sont les entrelacs génériques

Klf et Kjg sont les entrelacs spéciaux). Alors, f ~œ g si et seulement
si r s et il existe un homéomorphisme orienté h: S3 S3 tel que
h(Kf) Kg et h{Klf) Kag{l\i 1, où o est une permutation
de {1, r).

Ce théorème montre que les classes d'équivalence de ~oo sont aussi

déterminées par des invariants combinatoires.

§3. COMBINATOIRE ET CONJUGAISON TOPOLOGIQUE

Nous allons définir précisément la combinatoire des polynômes et étudier

son rapport avec les classes d'équivalence de ~.
Soit f e C[X, Y] et soit S(f C C l'ensemble de (2.2). Alors, la classe

d'isomorphie de la fibration f\ : C2\/ ~ 1(5(/)) - C\ S(f) est bien

évidemment un invariant topologique de /. Les renseignements sur la fibre
générique sont entièrement contenus dans l'entrelacs générique, d'après (2.7).
Les renseignements sur la monodromie de la fibration autour des valeurs dans

Soo(f) peuvent être déduits de (2.9); ce résultat contient aussi le plongement

en dehors d'un compact des fibres irrégulières à l'infini.
Pour connaître localement la monodromie autour des valeurs dans

C(/), il faut connaître le type topologique des singularités affines de /.
En effet, soit (x0,yo) e un P°int critique de / de valeur critique t0. On

prend 0 < s < 1 et 0<ô<^s; alors, si 0 < 11 - t0 | < ô, l'espace

/ "1 (0 n {(x, y) e C2 : | x - x0 \2 + | y - y0 \2 < s2} est une fibre de Milnor
du germe de singularité de courbe plane (/ " J(^0), (*o> yo))- En plus, une
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restriction convenable de f est un modèle de la fibration de Milnor. Puisque

les polynômes sont à singularités isolées le support de la monodromie autour

des valeurs dans C(f) est contenu dans un voisinage des singularités

affines de /.
Nous allons donner les renseignements combinatoires qu'il faut pour coder,

d'une part, ces renseignements locaux sur la fibre générique et la monodromie

de la fibration de / et, d'autre part, les renseignements sur les fibres non

génériques.

3.1. Soit S(f) {q, tp) l'ensemble des valeurs critiques et des valeurs

irrégulières à l'infini, et soit t0 e C\S(/). Considérons la courbe projective

plane Cf d'équation

F(X, Y,Z):=Zf[(AY Z) - tjZd)
7 0

Comme nous l'avons dit dans l'introduction, ses composantes irréductibles

sont: la droite à l'infini, l'adhérence d'une fibre générique de / et les

adhérences des fibres spéciales de /.
Soit o:L-*P2 la résolution plongée minimale des singularités de la

courbe Cf. La courbe g ~1 (Cf) est une courbe connexe dans Y dont toutes les

composantes irréductibles sont lisses et tous les points singuliers sont doubles

ordinaires. Nous allons définir un graphe pondéré G (F, /), qui aura plusieurs
classes de sommets.

Le graphe sous-jacent est le graphe dual de o_1(C/). Les sommets de ce

graphe correspondent aux composantes irréductibles de la courbe; le nombre
d'arêtes qui connectent deux sommets est le nombre de points d'intersection
entre les composantes irréductibles de o-1(C/) qui leur sont associées. Soit

V(F,f) l'ensemble des sommets; nous considérons une partition de cet
ensemble

V(F,f) Vg(F,f) u U Vj(F,f) u u V„(F, f)
i 1

Nous allons décrire chacun de ces sous-ensembles avec la pondération de
chaque sommet:

(0 L (F, f est le sommet correspondant à la transformée stricte de C,
La pondération de ce sommet sera {g, y, e}, où y indique le genre de la'
composante et e son nombre d'Euler, i.e., sa self-intersection.
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(ii) Vj(F,f) est l'ensemble des sommets correspondants à la transformée
stricte de Ctj, j l,p. La pondération de ces sommets sera

{j, y, e}, où y indique le genre de la composante et e son nombre
d'Euler.

(iii) Va(F,f) est l'ensemble des sommets correspondants aux composantes
exceptionnelles des singularités affines. La pondération de ces sommets

sera {a, e}, où e indique le nombre d'Euler de la composante. Chaque

composante connexe du sous-graphe contenant les sommets de Va(F, f)
est un arbre qui détermine le type topologique d'une singularité affine
de /.

(iv) Foo(F,/) est l'ensemble des sommets correspondants aux composantes
qui sont envoyées dans L«, par o. La pondération de ces sommets sera

{oo, e}, où e indique le nombre d'Euler de la composante.

L'homogénéisation F de f dépend des coordonnées affines de C2. Une

conséquence du plumbing calculus de [Neumann 1] (ou bien de la structure des

équivalences birationnelles entre surfaces) est la suivante:

3.2. Proposition. Soient F{, F2 deux homogénéisations de f. Alors,
quitte à renuméroter Vtj(Fk, f),k= 1,2» nous pouvons passer de

G{FX, /) à G(F2, /), en tant que graphes pondérés à plusieurs types
de sommets, par une suite de mouvements des types suivants:

0)

Figure 3.2.
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3.3. Définition. La combinatoire d'une application polynomiale f est

la donnée de la classe d'équivalence du graphe pondéré G(F,f où F est

un homogénéisé de f, pour la relation d'équivalence engendrée par (i)

et (ii).

3.4. Remarque. Le graphe G (F, f) contient les renseignements suivants sur

la topologie de l'application polynomiale /:
(a) Le plongement de la fibre générique de /.
(b) Le type topologique des fibres singulières.

(c) La topologie de f en dehors d'un compact.

(d) La base et la fibre de la fibration de /.
(e) La monodromie locale autour de chaque valeur critique ou irrégulière à

l'infini.
Par contre, dans le résultat suivant nous montrons que la donnée de la

classe d'équivalence de / ne détermine pas la topologie de /.
3.5. Théorème. Il existe fx, f2 e C[X, Y], avec des homogénéisés

Fi, F2 tels que:

(i) G(Fîmfi) G(F2, /2);
(ii) f\ + f2.

Nous n'avons pas encore les outils nécessaires pour démontrer le théorème.
Ils seront fournis dans la section suivante.

§4. Utilisations d'un couple de Zariski

Les couples de Zariski ont été définis dans [Artal]:

4.1. Définition. Un couple de Zariski est une paire de deux courbes
Ci, C2 dans P2 telles que

(i) degCi degC2 d.

(ii) Les deux courbes possèdent la même combinatoire, c'est-à-dire, il existe
un difféomorphisme (7(00, C,) - (7(C2),C2), où est un
voisinage régulier de la courbe Ct dans P2, / 1,2.

(iii) Les couples (P2, Q) et (P2, C2) ne sont pas homéomorphes.

Dans [Artal] nous parlons de l'histoire de ces couples, qui commence avec
Zariski. Dans cette section nous nous occupons d'un exemple important des
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couples de Zariski. L'exemple en question, qui se trouve dans [Artal], est une

paire de courbes dont on sait que leur plongement dans P2 est différent grâce

au b-invariant de chaque courbe. Rappelons une interprétation du ^-invariant
d'une courbe irréductible Q de degré d:

4.1.2. Soit L une droite quelconque de P2. On sait que Hx (P2\(Q u L); Z)
est isomorphe à Z. Considérons XdQ L P2\(Q u L) le revêtement non
ramifié cyclique à d feuilles. Alors le rang de Hx(XdQL\Z) est égal
à 2b(C) + 1.

Voici le couple de Zariski que nous allons utiliser:

4.3. Définition. Soit Q une courbe projective plane irréductible de

degré six; nous dirons que Q est de type * si Q possède un seul point
singulier Px et si ce point est de type A17.

Nous rappelons qu'une singularité de courbe plane est de type A17 s'il
existe des coordonnées analytiques locales x, y centrées au point singulier telles

que l'équation de la singularité est x2 - y18 0, i.e., la singularité possède

deux branches lisses avec nombre d'intersection égal à 9.

Soit IF l'espace de toutes les courbes de type *. Nous utiliserons le résultat
suivant de [Artal].

4.4. Théorème. Il y a deux composantes connexes <FX, <F2 dans JC
Si deux courbes appartiennent à des composantes connexes différenteselles
sont plongées différemment dans P2. Les deux composantes connexes sont
décrites comme suit:

(i) 3*1 est Fensemble des courbes Q\ e IF telles que si Rx est la

conique qui a un contact maximal avec Q x au point singulier
Pe Qi, alors, le nombre d'intersection de Qx et Rx en P est

égal à 12.

Il existe un ouvert de Zariski °àx de

i(X{XY-Z2) - Y3 - aZ(XY — Z2))2 + b(XY-Z2)3 \a,b e C}

tel que la famille ,rZ~x est l'ensemble de courbes projectives planes de degré

six dont l'équation est linéairement équivalente à un élément de °àx.

Pour les éléments Cx e nous avons b(Cx) - 2.

(ü) JF~2 est l'ensemble des courbes Q2 e IZ telles que si R2 est la

conique qui a un contact maximal avec Q2 au point singulier P e Q2,

alors, le nombre d'intersection de Q2 et R2 en P est égal à 10.
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Un exemple d'élément de éF2 est

(X(XY-Z2)- Y2Z)2-4Y(XY-Z2) (Z(XY-Z2)- Y3)

- (Z(XY-Z2) - Y3)2.

Pour les éléments de C2 e JZ"2 nous avons b{C2) 0.

Démonstration de (3.5). Fixons une courbe Q de type * et soit Pi son

point singulier. Soit L une droite générique passant par Pi, c'est-à-dire,

L n'est pas tangente à Q en Px et # {L n Q) - 5, L n Q {Pi, P5}

Choisissons des coordonnées telles que L soit la droite d'équation Z 0,

Pi soit [1:0:0] et que la droite tangente à Q en Pi soit Y 0. Considérons

f(X, Y) : F{X, Y, 1) e C[X, Y], où F(Xf Y, Z) 0 est l'équation de Q
dans ce système de coordonnées.

4.5. Lemme. Soo(f) {0} et si t ^ 0, la courbe Qt d'équation
F(X, Y, Z) tZd possède un seul point singulier en Pi. Ce point est

de type A5 et la tangente au point singulier n'est pas la droite L.

Preuve. En prenant X 1, nous avons des coordonnées affines centrées

en Pi. L'équation de Qt est:

0 — gt{Y, Z) : F(l, Y, Z) - tZ6 Y2 + termes de degré ^ 3

Nous éclatons le point Pj. Nous notons Ex la composante exceptionnelle;
nous gardons la même notation pour les transformées strictes. La courbe g,
et avec elle les courbes Qt, passent par un point Pi qui est dans Ex mais pas

Q

L

Figure 4.1.

dans L.

Q

L

Figure 4.2.
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On choisit des coordonnées affines centrées en Pi telles que l'équation de

l'éclatement s'écrive comme suit:

(yiZi,Zi)

L'équation de Ex est Zi 0. Nous savons que Q possède un point singulier
en Pi de type A15, non tangent à Ex.

L'équation de Q en Px est:

F(l,YxZuZi)
0 g{Yi, Zi) : (Yi + aZi)2 + termes de degré ^ 3

z\
où a e C. Par conséquent, l'équation de Qt est g(Yx, Zx) - tZ\ 0.

A
Nous éclatons maintenant le point Px. Les courbes Q et Qt vont toutes

A

passer par un point PJ de la nouvelle composante exceptionnelle E2 (qui ne
A

sera pas dans E{). On peut choisir des coordonnées centrées en P\ telles que
l'équation de l'éclatement soit:

(y2>z2)i-> ((y2-a)z2,z2)

D'après les équations précédentes et puisque Q possède en P[ un point
singulier de type A13, l'équation de Q est de la forme 0 Y\ + termes de

degré ^3, et, par conséquent, celle de Qt est de la forme:

0 Y\ - tZ\ + termes de degré ^ 3

A

ce qui implique que Qt possède un point double ordinaire en P[ si t 4=- 0. Par

conséquent, (Qt,P\) est de type A5.

4.6. Conséquence. Tous les polynômes / ainsi obtenus, possèdent la

même fibre générique, car, d'après le lemme précédent ils ont le même entrelacs

générique à l'infini, et l'on applique (2.7). En utilisant (2.9) nous voyons aussi

que tous ces polynômes sont topologiquement conjugués à l'infini.

4.7. Proposition. Soient Qt des courbes projectives planes d'équation

Fi(X, Y, Z) 0, / 1,2, où

Fi(X, Y, Z) (X(XY-Z2)- Y3)2-(XY-Z2)3
F2(X, Y, Z) (X(XY- (Y+Z)2) -

-4 Y(XY-(Y+Z)2) (Y(XY-(Y3)

- (X(XY - (Y +Z)2) - Y3)2

Alors, Q] et Q2 sont de type * et les couples (P2,ßi) et (P

ne sont pas homéomorphes. En particulier, les polynômes f\, obtenus

comme ci-dessus ne sont pas topologiquement conjugués.
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Preuve. La première assertion est une conséquence de (4.4). En effet, il

est facile de voir que Qx e Jû (prendre a - 0, b - 1) et Q2 e (nous

avons remplacé Z par Y + Z dans l'exemple donné dans (4.4)).

Il est facile de voir que la droite L d'équation Z 0 est générique

pour les deux cas. Soient X6QltL et XeQ^L les revêtements cycliques

d'ordre 6 de P2\(giuL) et P2\(g2ul), respectivement. Les rangs des

groupes abéliens Hx(X6QuL, Z) et Hx(X%^L, Z) sont égaux à 3 et 1, respectivement,

d'après (4.4) et (4.2). Par conséquent, les couples (P2,Q/uI),
i 1,2, ne. sont pas homéomorphes.

Si l'on construit les polynômes /, (X, Y) : Ft (X, Y1), i 1,2, nous

avons vu que les couples (C2, fj~ *(())), / 1, 2, ne sont pas homéomorphes.

Puisque 0 est la seule valeur singulière à l'infini, d'après (4.5), nous en

déduisons que les polynômes ne sont pas conjugués.

Il était concevable à priori que les plongements distincts de /," *(()),

i — 1,2, soient provoqués par les singularités des autres fibres de chaque

polynôme. Un calcul nous donne le lemme suivant:

4.8. Lemme. # C(/,-) 7 et pour chaque t e C(/z), la fibre ffx(t)
a exactement un point double ordinaire.

Fin de la démonstration de (3.5). Considérons les courbes Cfj données

par les polynômes F, (X, Y, Z), i 1, 2. Le lemme précédent et le lemme (4.5)

nous montrent qu'il y a une bijection entre les singularités de Cfl et Cfl qui
respecte le type topologique. Le nombre de composantes irréductibles et la

distribution de singularités dans les composantes sont les mêmes pour les deux

courbes.

Nous en déduisons que G(FX, f{) G(F2, f2) et (4.7) dit que

fx+f2.
Nous finissons en utilisant ces polynômes pour donner des contre-exemples

à la conjecture de Neumann:

4.9. Théorème. Les courbes 0), i 1,2, ont les mêmes entrelacs à

l'infini, mais elles ne sont pas topologiquement équivalentes.

Démonstration. Nous venons de voir dans la preuve de (4.7) que les deux
courbes ne sont pas topologiquement équivalentes.

D'après la définition des courbes de type *, et du choix générique de la
droite à l'infini, nous en déduisons que les deux courbes ont le même entrelacs
à l'infini. En effet, il suffit de prendre comme grande sphère le bord d'un
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voisinage tubulaire de la droite à l'infini Z 0 dans P2. Dans les deux cas,
les courbes rencontrent la droite en quatre points lisses et au point singulier
de type A17; les droites tangentes aux points d'intersection sont toujours
différentes de la droite à l'infini. En utilisant les techniques de [Eisenbud-
Neumann], nous voyons que les deux entrelacs à l'infini sont topologiquement
équivalents.
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