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COMBINATOIRE ET TYPE TOPOLOGIQUE
DES APPLICATIONS POLYNOMIALES DE C? DANS C

par Enrique ARTAL-BARTOLO

§1. INTRODUCTION

Nous étudions dans cet article des problemes liés a la classification
topologique des applications polynomiales et des courbes affines planes. Nous
allons décrire un invariant combinatoire des applications polynomiales
C2?2 — C. Nous utilisons ces résultats pour répondre négativement a une
conjecture qui se trouve dans [Neumann 2] qui affirme que le type topologique
des courbes affines planes non singuliéres est déterminé par leur entrelacs a
I’infini. Nous commengons par donner des définitions et préciser les problémes
et les résultats.

Considérons C[X, Y] muni de la relation d’équivalence définie comme suit:

Soient f, g € C[X, Y]; on note f, g: C?2— C les applications polynomiales
qu’ils définissent. Nous disons que f et g sont topologiquement conjugués,
noté f ~ g, s’il existe des homéomorphismes y: C2 = C2et ¢: C — C tels que
le diagramme suivant commute,

v

C2 ~— C2
rl g
C >C.
De la méme facon, soient C;, C, deux courbes affines planes, i.e,
il existe f,geC[X, Y] tels que C, = f-'(0) et C,=g~'(0). Nous
disons que les deux courbes sont topologiquement équivalentes s’il
existe un homéomorphisme y: C? — C2 tel que y(C)) = G,.
Nous rappelons la définition d’entrelacs & Dlinfini d’une courbe
affine plane, qu’on trouve dans [Neumann-Rudolph]. Pour R > 0,

Keywor_ds: Polyndmes, type topologique, entrelacs & ’infini, combinatoire. 1991 Mathe-
matics Subject Classification. Primary 14F45, 14E99. Secondary 55R55, 57M25.
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nous notons Sy:={(x,y) € C?| [x|2+]|y]|? = R?}. Soient fe C[X, Y]
et C:= f-1(0). Pour R >0 suffisamment grand, la courbe C (de
codimension réelle 2 dans C?2) intersecte transversalement S>; par conséquent
K%:= Cn S} est une sous-variété compacte orientée sans bord de
codimension 2 dans S3. C’est-a-dire, il s’agit d’un entrelacs dans Sfe qui est
une sphere de dimension 3. Par transversalité, le type topologique du
couple (S;,K ) ne dépend pas de R (s’il est suffisamment grand):

1.1. DEFINITION. [Neumann-Rudolph]. Soient fe C[X,Y], C := f ~1(0)
et R comme ci-dessus. On dit que (S3, Kc) est Dentrelacs a infini de
la courbe C, s’il a le méme type topologique que (S, K$).

Il est démontré dans [Neumann-Rudolph] que deux courbes topolo-
giquement équivalentes possédent des entrelacs a ’infini topologiquement
¢quivalents; ils démontrent aussi que la sphére ronde S; peut étre remplacée
par des spheres de dimension 3 suffisamment grandes, plongées raisona-
blement dans C?, sans changer le type topologique de I’entrelacs obtenu par
I’intersection avec la courbe C.

Les entrelacs a I’infini des courbes affines planes sont des entrelacs toriques
itérés, voir [Neumann-Rudolph], et sont codés par un graphe pondéré, voir
[Eisenbud-Neumann].

Aux applications polynomiales f: C? — C sont associées des fibrations
¢ > localement triviales:

1.2. THEOREME [Thom]. Soit [f:C?—C une application polyno-
miale. Alors, il existe un ensemble fini S C C tel que la restriction
f1: C2\f ~1(S) = C\S est une fibration différentiable localement triviale.

Le théoréme de Thom est valable en toute dimension. Nous noterons
S := S(f) P’ensemble minimal pour lequel la conclusion du théoréme est
vraie.

1.3. DEFINITION. Soit c € C\S; onditque f -'(c) C C est une fibre
générique de f. Le type topologique du plongement f ~1(c) C C ne
dépend pas de c € C\S, a cause du théoréme (1.2).

Le probleme de la classification topologique des courbes affines planes a
été partiellement résolu dans [Neumann2]: Deux courbes génériques sont
topologiquement équivalentes si elles possedent des entrelacs a [I’infini
homéomorphes. Une courbe C est générique s’il existe f e C[X, Y] tel que
C = f ~1(0) est une fibre générique de f. Les courbes génériques sont lisses,
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mais il existe des courbes lisses qui ne sont pas génériques; nous €n verrons
des exemples. W.D. Neumann conjecture que le résultat reste vrai si ’on
suppose seulement que C est lisse. Nous donnons dans cet article des exemples
de courbes lisses ayant le méme entrelacs a ’infini qui ne sont pas topolo-
giquement équivalentes.

L’autre probléme traité dans cet article est celui de donner des invariants
combinatoires pour les classes d’équivalence de la relation ~ définie ci-dessus.
Par des raisons techniques nous allons restreindre I’étude des invariants
combinatoires aux polyndmes a singularités isolées, i.e., aux f € C[X, Y] tels
que il n’y a pas de facteur carré dans la décomposition en facteurs irréductibles
de f(X, Y] —t,vteC.

L’idée clé est la suivante: nous essayons de décrire de fagcon combinatoire
I’ensemble minimal S(f) de (1.2) aussi bien que la fibration f|. Pour ce
faire, nous allons associer a chaque polyndme une courbe projective plane C,
comme suit:

L’ensemble S(f) minimal est décrit dans [Lé-H4]. Nous en rappelons
I’essentiel dans la section §2. Nous considérons C? plongé dans P?. Pour
chaque s € S(f), soit Cs ’adhérence de f ~!(s) dans P2. Alors la courbe C,
associée a f est la courbe projective plane dont les composantes irréductibles
sont: la droite a I’infini, ’adhérence d’une fibre générique et les courbes C,
pour s € S(f). La résolution des singularités de C, fournit un graphe
pondéré qui contient des renseignements sur la fibration associée a f'; la combi-
natoire de f est la donnée de ce graphe pondéré (modulo une relation
d’équivalence basée sur le plumbing calculus de [Neumann1]). Des résultats
de [Neumann?2] et [Fourrier] incitaient & penser que cette combinatoire peut

étre un invariant complet du type topologique de f. Nous allons démontrer
que ce n’est pas le cas.

Dans la section suivante, nous allons énoncer les résultats de [Neumann 2]

et [Fourrier] qui ont inspiré ce travail. Nous rappelons aussi le résultat de
[Lé-H4] qui précise (1.2).

La section §3 sert a décrire proprement la combinatoire d’un polyndme;
nous énoncerons aussi le résultat qui affirme que la combinatoire n’est pas un
invariant complet pour le type topologique des applications polynomiales, dont
la démonstration sera donnée dans la section §2.

Dans la section §4, nous énongons des résultats qui se trouvent dans [Artal]
sur les couples de Zariski de courbes projectives planes. Cette section finira
avec le contre-exemple a la conjecture de Neumann.
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§2. COMBINATOIRE ET INFINI

Le résultat (1.2) de Thom a été précisé dans [Lé-H4]; les auteurs y donnent
la description précise de ’ensemble minimal S(f) pour lequel fjc\s(s) est une
fibration.

Notons C(f) ’ensemble des valeurs critiques de f,
0 0
C(f) = {toeC l 3(x0, yo) € f ~'(%) tel que BZ(XO,}’O) = a—f(xo,yo) = 0} :
X Yy

2.1. DEFINITION. On dit que 1, € C est une valeur réguliére a
Pinfini s’ existe & >0 et K C C? compact tels que si

D} s:={teC:|t—1]|<38},

alors la restriction f|: f “I(Dfo,s) N (CZ\K)—>D:§0’8 est une fibration
différentiable triviale. Dans le cas contraire, on dit que 1, est une valeur
irréguliere a Pinfini. L’ensemble des valeurs irrégulieres a [’infini sera
noté So(f).

2.2. THEOREME. [Lé&-H4] S(f) := C(f) u S»(f) est ’ensemble minimal
qui vérifie (1.2).

2.3. Nous rappelons la description de S, (f) de [Lé-Ha]. Soit d : = deg(f)
et F(X,Y,Z)eClX,Y,Z] ’homogénéis¢ de degré d de f,F(X,Y, Z)
=24 (X/Z,Y/Z).

Géométriquement, nous venons de choisir une compactification C? C P?
ou L, := {[X:Y:Z] e P2|Z = 0} est la droite a I’infini. La compactifica-
tion des fibres de f donne une famille {C;}, . ¢ de courbes projectives planes,
ou F(X,Y,Z) — tZ¢ = 0 est I’équation de C,, pour ¢ € C.

L’ensemble Z,.(f):= Cin L, ={[X:Y:0]|F(X,Y,0) =0} est indé-
pendant de la valeur de 7, c’est-a-dire, toutes les courbes C, ont les mémes
points a I’infini.

Soit P € Z,(f); alors, nous avons une famille de germes en P de singula-
rités de courbes planes {(C,;, P) C (P?, P)};c. En dehors d’un ensemble fini
de valeurs de ¢, cette famille est équisinguliére, c’est-a-dire, cette famille
posséde un type topologique générique. Notons Sp( f) ’ensemble des valeurs
de ¢ € C pour lesquelles le type topologique de (C; , P) C (P2, P) n’est pas
générique.

Alors, S.(f) = U  Sp(f).

Pe Z%(f)
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2.4. Exemple. [Broughton] Soit f:= X (XY — 1); il est facile de voir que
C(f) = 0. Nous avons Z.(f)=1{[1:0:0],[0:1:0]}. Pour [0:1:0], la
famille de singularités est définie par les équations {Y — Z% — ¢tZ3 = 0}, ¢ c;
cette famille est équisinguliére et Sp.1.01(f) = 0.

Pour [1:0:0], la famille de singularités est définie par les équations
{X? — XZ% — tZ3 = 0},cc; pour t # 0 la singularité est un point cuspidal
ordinaire et pour ¢=0 il s’agit d’un tacnode. Par conséquent,
S[1:0:0](f)={0}- _

Dans ce cas S(f) = {0}; nous remarquons que la courbe f ~!(0) est lisse
mais pas générique.

Dés maintenant et jusqu’a la fin de I’article, nous ne travaillerons qu’avec
des polynomes a singularités isolées.

La description de [L&-H4] nous améne a étudier ce qui se passe a I’infini.
Il est facile de voir que pour un polynéme f toutes ses fibres génériques, voire
toutes les fibres f ~1(¢) pour t € C\S.(f), ont le méme entrelacs a I’infini.

2.5. DEFINITION. Soit fe C[X, Y]; 'entrelacs générique de f, noté
K, C S3, est [Dentrelacs a Uinfini de f-'(t) pour e C\Su(f)
quelconque. Les entrelacs spéciaux de [f sont les entrelacs a l’infini des
fibres f ~1(t) pour te S.(f).

2.6. DEFINITION. L’entrelacs total de f est [I’entrelacs a linfini de la

courbe  d’éguation (fXY-1t) J] (f&X,Y)-1t)=0, avec
t € Seo (f)

to € C\S.(f) quelconque. Cet entrelacs est muni d’une partition en sous-
entrelacs: un entrelacs générique et + S..(f) entrelacs spéciaux.

Les premiers rapports entre les entrelacs a I'infini et la topologie des
polyndmes se trouvent dans les résultats suivants:

2.7. THEOREME [Neumann2]. Soient f,ge C[X,Y], f,e€ C\S(f) et
so € C\S(g). Alors, les couples (C2,f -'(t)) et (C2,g-!(sy) sont
homéomorphes si et seulement si les couples (S3, K ) et (S3,K;) lesont.

En particulier, le plongement des fibres génériques peut &tre exprimé a
I’aide d’invariants combinatoires.

2.8. DEFINITION. Soient f,ge C[X, YI; on dit que f et g
sont topologiquement conjugués a Pinfini, nozé f~- g, S’ existe
des compacts L;,L, C C et L?,L%C C?, avec des homéomorphismes



216 E. ARTAL-BARTOLO

w:CA\L;—> C\L; et ¢:C\L;— C\L, fels que le diagramme suivant
commute.

C3\L2 > CN\L2.
5l gl

o

C\L; - C\L, .

2.9. THEOREME [Fourrier]. Soient f,g e C[X, Y] et soient

r s
Ki=K,u UK, e K,=K,UK!
, i=1 i=1
les entrelacs totaux de f,g (K, et K, sont les entrelacs génériques,
K } et Ké sont les entrelacs spéciaux). Alors, f~« g si et seulement
si r=s et il existe un homéomorphisme orienté h:S3— S> tel que
hK) =K, et h(Ky)=KP,i=1,..,r, on o est une permutation
de {1,...,r}.

Ce théoreme montre que les classes d’équivalence de ~, sont aussi
déterminées par des invariants combinatoires.

§3. COMBINATOIRE ET CONJUGAISON TOPOLOGIQUE

Nous allons définir précisément la combinatoire des polyndmes et étudier
son rapport avec les classes d’équivalence de ~.

Soit fe C[X, Y] et soit S(f) C C ’ensemble de (2.2). Alors, la classe
d’isomorphie de la fibration f): C>\f - (S(f)) = C\S(f) est bien
évidemment un invariant topologique de f. Les renseignements sur la fibre
générique sont entiérement contenus dans I’entrelacs générique, d’apreés (2.7).
Les renseignements sur la monodromie de la fibration autour des valeurs dans
S.(f) peuvent étre déduits de (2.9); ce résultat contient aussi le plongement
en dehors d’un compact des fibres irréguliéres a I’infini.

Pour connaitre localement la monodromie autour des valeurs dans
C(f), il faut connaitre le type topologique des singularités affines de f.
En effet, soit (xg, yy) € C? un point critique de f de valeur critique #,. On
prend 0<e<1l et 0<8<g; alors, si 0<|t~—1f|<$§, Iespace
F=1) n{(x,y) € C2:|x — x0 |2 + |y — yo|* < €2} est une fibre de Milnor
du germe de singularité de courbe plane (f ~!(%), (xo, ¥o)). En plus, une
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restriction convenable de f est un modele de la fibration de Milnor. Puisque
les polyndmes sont a singularités isolées le support de la monodromie autour
des valeurs dans C(f) est contenu dans un voisinage des singularités
affines de f.

Nous allons donner les renseignements combinatoires qu’il faut pour coder,
d’une part, ces renseignements locaux sur la fibre générique et la monodromie
de la fibration de f et, d’autre part, les renseignements sur les fibres non
génériques.

3.1. Soit S(f) = {t, ..., 1,} Pensemble des valeurs critiques et des valeurs
irrégulieres a I’infini, et soit z, € C\S(f). Considérons la courbe projective
plane C; d’équation

p
FX,Y,2):= Z [ FX,Y,2)-1,Z7) .

J=9

Comme nous ’avons dit dans P’introduction, ses composantes irréductibles
sont: la droite a l’infini, ’adhérence d’une fibre générique de f et les
adhérences des fibres spéciales de f.

Soit 6: Y — P2 la résolution plongée minimale des singularités de la
courbe C;. La courbe o ~1(Cy) est une courbe connexe dans Y dont toutes les
composantes irréductibles sont lisses et tous les points singuliers sont doubles
ordinaires. Nous allons définir un graphe pondéré G (F, f), qui aura plusieurs
classes de sommets.

Le graphe sous-jacent est le graphe dual de 6 ~!(Cy). Les sommets de ce
graphe correspondent aux composantes irréductibles de la courbe; le nombre
d’ar€tes qui connectent deux sommets est le nombre de points d’intersection
entre les composantes irréductibles de ¢ ~!(Cs) qui leur sont associées. Soit
V(F, f) ensemble des sommets; nous considérons une partition de cet
ensemble

VIE, /) =V, (F, /) v U Vi(F, /) 0 Vo(F, f) v Vo (F, f) .

i=1

Nous allons décrire chacun de ces sous-ensembles avec la pondération de
chaque sommet:

(1) Vg(F, f) est le sommet correspondant a la transformée stricte de Ci, -
La pondération de ce sommet sera {g, v, e}, ou v indique le genre de la
composante et e son nombre d’Euler, i.e., sa self-intersection.



218 E. ARTAL-BARTOLO

(i1) V;(F, f) est ’ensemble des sommets correspondants a la transformée

stricte de C,,,j=1,...,p. La pondération de ces sommets sera
{j,v,e}, ou v indique le genre de la composante et e son nombre
d’Euler.

(iii) V,(F, f) est ’ensemble des sommets correspondants aux composantes
exceptionnelles des singularités affines. La pondération de ces sommets
sera {a, e}, ou e indique le nombre d’Euler de la composante. Chaque
composante connexe du sous-graphe contenant les sommets de V,(F, f)
est un arbre qui détermine le type topologique d’une singularité affine
de f.

(iv) V. (F, f) est ’ensemble des sommets correspondants aux composantes
qui sont envoyées dans L, par o. La pondération de ces sommets sera
{o0, e}, ou e indique le nombre d’Euler de la composante.

L’homogénéisation F de f dépend des coordonnées affines de C2. Une
conséquence du plumbing calculus de [Neumann 1] (ou bien de la structure des
équivalences birationnelles entre surfaces) est la suivante:

3.2. PROPOSITION. Soient F,;,F, deux homogénéisations de f. Alors,
quitte a renuméroter V,J.(Fk, f), k=1,2, nous pouvons passer de
G, f) a GWF,, f), en tant que graphes pondérés a plusieurs types
de sommets, par une suite de mouvements des types suivants:

(1)

4

P "‘ P
’l . ‘\ 'I
(c0,€) (o) /%, ! (00,6 +1) "N
[ ] [ ]
® :é—}:
(00, 1) /! N (00, € + 1) .
N R L
s S )
A R N

A Y
FIGURE 3.1.

(ii)

(00, €)

l’ * 'l

] ]

\ ® H "‘ (c0,e+1)
\

v (c0, 1) \

FIGURE 3.2.

4

A

CToaa=m"
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3.3. DEFINITION. La combinatoire d’une application polynomiale [ est
la donnée de la classe d’équivalence du graphe pondéré G(F, f), ou F est
un homogénéisé de f, pour la relation d’équivalence engendrée par (i)
et (ii).
3.4. Remarque. Le graphe G(F, f) contient les renseignements suivants sur
la topologie de I’application polynomiale f:
(a) Le plongement de la fibre générique de f.
(b) Le type topologique des fibres singulieres.
(c) La topologie de f en dehors d’un compact.
(d) La base et la fibre de la fibration de f.
(e) La monodromie locale autour de chaque valeur critique ou irréguliere a
I’infini.

Par contre, dans le résultat suivant nous montrons que la donnée de la

classe d’équivalence de f ne détermine pas la topologie de f.

3.5. THEOREME. [/ existe f,,f,e€ C[X,Y], avec des homogénéisés
F\,F, tels que:

W) GFy, f1) = G, f);
@) fi+ fa2.

Nous n’avons pas encore les outils nécessaires pour démontrer le théoréme.
Ils seront fournis dans la section suivante.

§4. UTILISATIONS D’UN COUPLE DE ZARISKI
Les couples de Zariski ont été¢ définis dans [Artal]:

4.1. DEFINITION. Un couple de Zariski est une paire de deux courbes
C,,C, dans P? telles que

(1) degC, = deg(C, = d.
(1) Les deux courbes possédent la méme combinatoire, c’est-a-dire, il existe

un difféomorphisme (T(Cy), Cy) = (T(Cy), C,), ou T(C;) est un
voisinage régulier de la courbe C; dans P2,i=1,2.

(i) Les couples (P2,Cy) et (P2,C,) ne sont pas homéomorphes.

Dans [Artal] nous parlons de I’histoire de ces couples, qui commence avec
Zariski. Dans cette section nous nous occupons d’un exemple important des
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couples de Zariski. L’exemple en question, qui se trouve dans [Artal], est une
paire de courbes dont on sait que leur plongement dans P2 est différent grace
au b-invariant de chaque courbe. Rappelons une interprétation du b-invariant
d’une courbe irréductible Q de degré d:

4.1.2. Soit L une droite quelconque de P2. On sait que H,(P2\(Q U L); Z)
est isomorphe a Z. Considérons X ’éy ; 2> P2\(QuU L) le revétement non
ramifié cyclique a d feuilles. Alors le rang de H,(X g, 3 Z) est égal
a2bC) + 1.

Voici le couple de Zariski que nous allons utiliser:

4.3. DEFINITION. Soit Q une courbe projective plane irréductible de
degré six;, nous dirons que Q est detype * si Q posséde un seul point
singulier P, et si ce point est de type A;;.

Nous rappelons qu’une singularité de courbe plane est de type A;; s’il
existe des coordonnées analytiques locales x, y centrées au point singulier telles
que I’équation de la singularité est x2 — y!8 = 0, i.e., la singularité posséde
deux branches lisses avec nombre d’intersection égal a 9.

Soit . I’espace de toutes les courbes de type *. Nous utiliserons le résultat
suivant de [Artal].

4.4. THEOREME. Il y a deux composantes connexes % ,,.7, dans 7.

Si deux courbes appartiennent a des composantes connexes différentes, elles

sont plongées différemment dans P?*. Les deux composantes connexes sont

décrites comme Suit:

(1) &, est lensemble des courbes Q, € ¥ telles que si R, est la
conique qui a un contact maximal avec Q, au point singulier
P e Q,, alors, le nombre d’intersection de Q, et R, en P est
égal a 12.

1l existe un ouvert de Zariski %, de
{(X(XY - 2Z2) - Y3 - aZ(XY — Z?))2 + b(XY - Z*)3*|a,b € C}

tel que la famille 7, est I’ensemble de courbes projectives planes de degré
six dont I’équation est linéairement équivalente a un élément de U, .
Pour les éléments C, € ., nous avons b(C;) = 2.

(i) 7%, est l’ensemble des courbes Q, € ¥ telles que si R, est la
conique qui a un contact maximal avec Q, au point singulier P € Q,,
alors, le nombre d’intersection de Q, et R, en P est égal a 10.
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Un exemple d’élément de 7, est

(X(XY — Z2) - Y2Z)?2 - 4Y(XY - Z?) (Z(XY - Z2) - Y?)
- (Z(XY -2Z?»-Y?)2.
Pour les éléments de C, € %, nous avons b(C,) = 0.
Démonstration de (3.5). Fixons une courbe Q de type et soit P, son

point singulier. Soit L une droite générique passant par P;, c’est-a-dire,
L n’est pas tangente 3 Q en P, et #(L.nQ) =5, LnQ={Py,..., Ps}.

FIGURE 4.1.

Choisissons des coordonnées telles que L soit la droite d’équation Z = 0,
P, soit [1:0:0] et que la droite tangente a Q en P; soit Y = 0. Considérons
f(X,Y):= F(X,Y,)e C[X, Y], ou F(X, Y, Z) =0 est I’équation de Q
dans ce systeme de coordonnges.

4.5. LEMME. S.(f)={0} et si t#0, la courbe Q, d’équation
F(X,Y,Z)=1tZ? posséde un seul point singulier en P,. Ce point est
de type As et la tangente au point singulier n’est pas la droite L.

Preuve. En prenant X = 1, nous avons des coordonnées affines centrées
en P,. L’¢équation de Q, est:

0=g,(Y,Z2):= F(1,Y,Z) — tZ% = Y? + termes de degré > 3.

Nous éclatons le point P, . Nous notons £ la composante exceptionnelle;
nous gardons la méme notation pour les transformées strictes. La courbe Q,

et avec elle les courbes Q,, passent par un point 131 qui est dans £, mais pas
dans L.

FIGURE 4.2.
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ol b ’ - r /\ /4 o
On choisit des coordonnées affines centrées en P; telles que I’équation de
I’éclatement s’écrive comme suit:

1,z20) P (0121, 21) .

L’€quation de E; est Z; = 0. Nous savons que Q posséde un point singulier
en P; de type A5, non tangent a E;.

L’équation de Q en P, est:

A F(ls lelazl) ’
0=2(Y1,2) := 2 = (Y, + aZ,)? + termes de degré >3,
1

ol a € C. Par conséquent, 1’équation de Q, est g(Y,,Z,) — tZ7 = 0.

Nous éclatons maintenant le point 131. Les courbes Q et Q, vont toutes
passer par un point 131 de la nouvelle composante exceptionnelle £, (qui ne
sera pas dans E£;). On peut choisir des coordonnées centrées en }3{ telles que
I’équation de I’éclatement soit:

(12, 22) 2 (02 — D22, 22) -

D’apres les équations précédentes et puisque Q posséde en 13{ un point
singulier de type A s, I’équation de QO est de la forme 0 = Y§ + termes de
degré > 3, et, par conséquent, celle de Q, est de la forme:

0 = Y? — tZ2 + termes de degré >3,

ce qui implique que Q, posseéde un point double ordinaire en ﬁ{ sit# 0. Par
conséquent, (Q,, P,) est de type As. [

4.6. CONSEQUENCE. Tous les polyndbmes f ainsi obtenus, possedent la
méme fibre générique, car, d’apres le lemme précédent ils ont le méme entrelacs
générique a I’infini, et ’on applique (2.7). En utilisant (2.9) nous voyons aussi
qgue tous ces polyndmes sont topologiquement conjugués a 1’infini.

4.7. PROPOSITION. Soient Q; des courbes projectives planes d’équation
FX,Y,2)=0,i=1,2, ou
F(X,Y,Z2)=(X(XY-2Z22%)-Y3)?— (XY - Z?)3
F(X,Y,Z2) = (X(XY—-(Y+2)?)-Y(Y + Z))?
—4Y XY - (Y +2)2)(Y(XY- (Y +2)?)-7Y?)
—(X(XY - (Y +2)?) - Y?3)2
Alors, Q, et Q, sont de type * et les couples (P%,Q;) et (P%, Q)

ne sont pas homéomorphes. En particulier, les polynémes f,, f, obtenus
comme ci-dessus ne sont pas topologiquement conjugués.
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Preuve. La premiére assertion est une conséquence de (4.4). En effet, il
est facile de voir que Q, € %, (prendre a =0,b= —1) et Q, € %, (nous
avons remplacé Z par Y + Z dans l'exemple donné dans (4.4)).

Il est facile de voir que la droite L d’équation Z = 0 est génerique
pour les deux cas. Soient X 6Ql, . et X ‘SQZ’ . les revétements cycliques
d’ordre 6 de P2\(Q, U L) et P2\(Q,uU L), respectivement. Les rangs des
groupes abéliens H; (XéQhL, Z) et H, (X6QZ,L, Z) sont égaux a 3 et 1, respecti-
vement, d’aprés (4.4) et (4.2). Par conséquent, les couples P2, 0,ul),
i = 1,2, ne.sont pas homéomorphes.

Si I’on construit les polyndmes f;(X,Y) := F;(X, Y, 1), i = 1,2, nous
avons vu que les couples (C2, f;'(0)), i = 1,2, ne sont pas homéomorphes.
Puisque 0 est la seule valeur singuliére a l’infini, d’apres (4.5), nous en
déduisons que les polyndmes ne sont pas conjugués. U]

Il était concevable a priori que les plongements distincts de f ,._1(0),
i = 1,2, soient provoqués par les singularités des autres fibres de chaque
polyndme. Un calcul nous donne le lemme suivant:

4.8. LEMME. #C(f,) =7 et pour chaque te C(f;), la fibre f;'(t)
a exactement un point double ordinaire.

Fin de la démonstration de (3.5). Considérons les courbes C;, données
par les polyndmes ﬁ’, (X,Y,72),i =1, 2. Le lemme précédent et le lemme (4.5)
nous montrent qu’il y a une bijection entre les singularités de Cy, et Cr, qui
respecte le type topologique. Le nombre de composantes irréductibles et la
distribution de singularités dans les composantes sont les mémes pour les deux
courbes.

Nous en déduisons que G(F, fi1) = GWF,, fo) et (4.7) dit que
S1#+ fa. L

Nous finissons en utilisant ces polyndmes pour donner des contre-exemples
a la conjecture de Neumann:

4.9. THEOREME. Les courbes f;'(0),i= 1,2, ontles mémes entrelacs d
Uinfini, mais elles ne sont pas topologiquement équivalentes.

Démonstration. Nous venons de voir dans la preuve de (4.7) que les deux
courbes ne sont pas topologiquement équivalentes.

D’apres la définition des courbes de type #, et du choix générique de la
droite a ’infini, nous en déduisons que les deux courbes ont le méme entrelacs
a I'infini. En effet, il suffit de prendre comme grande sphére le bord d’un
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voisinage tubulaire de la droite a 1’infini Z = 0 dans P2. Dans les deux cas,
les courbes rencontrent la droite en quatre points lisses et au point singulier
de type A;; les droites tangentes aux points d’intersection sont toujours
différentes de la droite a I’infini. En utilisant les techniques de [Eisenbud-
Neumann], nous voyons que les deux entrelacs a I’infini sont topologiquement

équivalents. [

[Artal]

[Broughton]

[Eisenbud-Neumann]

[Fourrier]
[Lé-Ha]

[Neumann 1]

[Neumann 2]

[Neumann-Rudolph]

[Thom]
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