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Nous pouvons maintenant prouver le Théorème 1. On sait que

{3,
si (1.1) n'a pas de solution impaire,

1, si (1.1) a des solutions impaires.

Ce résultat était déjà connu de Gauss ([2], §256, VI); d'autres démonstrations

se trouvent dans [8], §151 et [5], page 172.

Le Théorème 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorèmes 2 et 3 quand
D 1 (mod 8) seront exposés dans un article ultérieur.

§4. Exemples numériques

a) Théorème 2.

Nous donnons les valeurs de AL N* et N* pour tous les D s= 5 (mod 8)

de 5 à 109, et pour 141 et 165 que nous étudierons en b).

D AL N*_ N*

5 4 1 1

13 10 3 1

21 14 4 2

29 16 5 1

37 24 7 3

45 20 6 2

53 22 7 1

61 36 11 3

69 34 10 4

77 26 8 2

85 46 14 4

93 38 12 2

101 36 11 3

109 58 17 7

141 58 18 4

165 60 18 6
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b) Théorèmes 1 et 3.

Nous noterons H+(A) le nombre des classes d'idéaux au sens strict de

l'anneau Oa

Pour chacun des deux exemples le tableau correspondant donne successivement

pour chaque classe C de C/D un idéal négativement réduit, le nombre
/_ des idéaux négativement réduits de C, un idéal négativement réduit de

0(C) et enfin les nombres /* et /* des idéaux négativement réduits et réduits
de 0(C).

bl) D 141. C'est le plus petit D 5 (mod 8) tel que h + (D) > 1 et tel

que (1.1) n'a pas de solution impaire. On a h + (141) 2 et h + (4 x 141) 6.

C /_

[1, 12 + ]/l4Î] 2

[4, 13 + 1/141] 6

[7, 13 + 1/141] 6

[5, 14 + j/l4Î] 8

[11, 14 + 1/Ï4Î] 8

[20, 29 + 1/Ï4Ï] 28

1,-

0(C)

13 + l/Ï4T

l* l*

5,
19 + 1/141

14

Le Théorème 3 affirme que 2 + 6 + 6 3x4 + 2 et 8 + 8 +28 3x14 + 2,
ce qui est vrai.

Le Théorème 1 affirme que 2^3x4 + 2, 6 é 3 x 4 + 2, 8^3x14 + 2,
28 + 3 x 14 + 2, ce qui est vrai.

b2) D 165. C'est le plus petit D5 (mod 8) tel que 4 et tel
que (1.1) a des solutions impaires. On a 165) h +(4 x 165) 4.

C

[1, 13 + 1/165]

[3, 15 + 1/165]

[7, 16 + 1/165]

[11,22 + 1/165]

14

34

1,

3,

7,

6(C)

13 + 1/165

/*

1

15 + 1/165

23 + 1/165

33 + 1/Î65
1 1 - 11
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Les Théorèmes 1 et 3 affirment que 4 3x1 + 1, 8 3x2 + 2,
14 3x4 + 2 et 34 3x11 + 1, ce qui est exact.

D'autres exemples du Théorème 1 se trouvent dans [9].

Les auteurs remercient le rapporteur pour ses indications judicieuses qui
leur ont permis de parfaire leur texte.
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