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§3. L'HOMOMORPHISME 0 ET L'APPLICATION \|/

Soit CA le groupe des classes d'idéaux au sens usuel de l'anneau Oa

L'homomorphisme 0 de CDfi sur CD défini et étudié dans [7], §3 est en fait
un homomorphisme des groupes des classes d'idéaux au sens strict, de C^fl
sur Cq. On vérifie que le Theorem 1 et le Corollary 4 de [7] soient vrais si

l'on remplace classe par classe au sens strict et équivalence par équivalence au

sens strict: pour adapter la démonstration du Théorème 1 il suffit de ne

considérer que des substitutions linéaires de déterminant + 1 (pages 333-334),

et pour celle du Corollary 4 il suffit de remarquer que, avec les notations
de [7], page 335,

b —- - + 1 Dsf > 0
\ 2 a \ 2c

A partir de maintenant nous considérons le cas où D 1 (mod 4) et f — 2.

Lemme 4. Un idéal primitif de Oad s'écrit I - [a, b + ]/D] avec
b 1 (mod 2), et soit a 1 (mod 2), soit a 0 (mod 4). Si C est la

classe au sens strict de I, la classe 0(C) contient l'idéal 0(7) où 0(7)
est défini par

(3.1) eoo -

b + \/D
ay

2

a b + j/77

4' 2

si a 1 (mod 2)

si a 0 (mod 4)

Démonstration. Soit 7= [a, b' + ]/D] un idéal primitif de 04D. On a

donc D b'2 - ac. Si b' est pair alors a est impair, donc
7 [a, b' + a + ]/D], donc on peut toujours supposer 7 [a, b + ]/D]
avec b impair. Alors ac 0 (mod 4) et, comme (<a, 2b, c) 1, on voit que:
soit ö=1 (mod 2), c 0 (mod 4), soit a 0 (mod 4), c 1 (mod 2).

Le fait que 0(7) e 0(C) est une conséquence immédiate de [7] Theorem 1

et Corollary 4.

Nous supposerons toujours b 1 (mod 2) dans l'écriture I [a, b + ]/D]
b + ]/D\

d'un idéal primitif de 04D et nous poserons 7 a[1, cp] avec cp

a

où (p est défini modulo 1.
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Soit 7 associé à (p un idéal de Oa (À D ou AD). Nous noterons /' et cp'

l'idéal et le nombre associés obtenus à partir de / et (p par une étape de

1

réduction négative, c'est-à-dire cp' Nous avons
[cp + 1] - cp

Proposition 6. Soit I a[1, cp] un idéal primitif négativement réduit
de Oad. Si a 1 (mod 2) et si 0(7) n'est pas négativement réduit alors
(0(7))' estf négativement réduit. Si a 0 (mod 4), 0(7) est négativement
réduit. ^

Démonstration. D'après le Lemme 2 on a (p + [-cp] > 0. Si

(p"
a 1 (mod 2), 0(7) a

- cp

1,- est négativement réduit si, et seulement

• ®
SI, h

2

tanément

(3.2)

> 0. Si 0(7) n'est pas négativement réduit on a simul-

d'où, comme [- cp] >2

(3.3)

cp + [-cp]>0, cp + 2

<P

~ (P

< 0

on voit que [- cp] =2 |-^— + 1 et

1<-Q
2 2

~(P

2

Des inégalités (3.2) on déduit aussi

-cp

< 1

~(p
2

(3.4) + i
2

avec 0 <
(P

+ 1

!<*<-
2 2

?<!.
2 2

- (P
d'où

Pour vérifier que 0(7)' est négativement réduit il suffit de voir que

1

(P

+ 1
<P

2

- 1

-cp'
__

<P

2 2

> 0

ce qui résulte de (3.3) et (3.4).

Si a s 0 (mod 4), 0(7) -[1, 2cp] est négativement réduit, car 2cp + [- 2cp]

^ 2cp + 2[~ cp] > 0. Ceci achève de prouver la proposition 6.
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Soit maintenant 7s l'ensemble des idéaux négativement réduits de Oad.
Nous considérons la partition suivante de E en trois sous-ensembles

Ei, E2, 7s3 Soit I a[1, (p] un idéal primitif de 04D, négativement réduit.
Alors

I e Ex si a 1 (mod 2) et 0(7) est négativement réduit,

I e E2 si a 1 (mod 2) et 0(7) n'est pas négativement réduit,

7 e 7s3 si a 0 (mod 4)

Soit 7s* l'ensemble des idéaux négativement réduits de Od. Nous définissons

une application \j/ de E dans E* de la manière suivante:

y (7) 0 (7), si 7 e 7si, ou 7e73,
y (7) (0(7))', si le 7s2,

de sorte que \|/(7) e 0(C), où C désigne la classe de 7.

Les propositions suivantes ne sont vraies que si D 5 (mod 8).
Ce qui distingue ce cas est que, si D 5 (mod 8), pour tout idéal

b +]/Dl
J a, on a a c 1 (mod 2).

Proposition 7. Si D 5 (mod 8) la restriction de y à Ts 3 est

surjective. L'image réciproque d'un idéal J e E* a deux éléments si J est

réduit, un seul si J n'est que négativement réduit.

Démonstration. Soit J a[ 1, co] un élément de C*. On peut supposer
0 < œ < 1 < co. Les idéaux de y-1 (7) appartenant à 7s3 sont à chercher

co + /cl
où k e Z, c'est-à-dire parmi les idéauxparmi les idéaux 4 a

co

1,-

Ii 4 a 1,- et L 4# 1,-
co + 1

Les idéaux Ix et I2 sont primitifs

et 72 est négativement réduit alors que 72 l'est si, et seulement si, co > 2 ce qui
signifie que J est réduit.

Proposition 8. Si D 5 (mod 8) les restrictions de y à E{ et à

7s2 sont des bijections de E{ (i 1, 2) sur 7s*.

Démonstration. Soit yi la restriction de y à 7si, et soit J a[1, co] e E*.
Onaco + [-co]>0, donc 7 a[l, 2co] est négativement réduit et, comme

a 1 (mod 2), on a 0(7) J et I e Ex, ce qui montre que y! est

surjective. Soit 71 fli[l,(pi] un idéal de E\ tel que yi(70 7; alors
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Ô(/i) ax 'T J, d'où ai a et <pi 2co (mod 2), ce qui montre que

7j / et que ijq est injective.

Considérons maintenant la restriction \j/2 de \|/ à E2. Soit J un idéal de is*

et co le nombre négativement réduit associé à J. Les idéaux /_ donnant J par

une étape de réduction négative sont définis par les nombres in eZ).
co + n

_ 2
Comme est un nombre de discriminant 4D, les idéaux \i/2_1(-0 sont,

-2
co + n

parmi les idéaux définis par les nombres
co + n

tivement réduits sans que /_ le soit, ce qui se traduit par

{ne Z), ceux qui sont néga-

- 1

+
1

co + n
< 0 +

co + n

d'après le lemme 2, c'est-à-dire

1

(3.5)
"

_
co + n

co + n co + n
> 0

< <
co -h n co + n

Tenant compte de ce que 0 < cö < 1 < co, on vérifie que n 1 est la seule

valeur de n qui satisfait (3.5), ce qui montre que \j/2 est bijective et achève de

prouver la proposition 8.

Des propositions 7 et 8 résulte immédiatement le résultat suivant:

Théorème 2. Soit D 5 (mod 8) un discriminant > 0. Soit 7V_

le nombre des idéaux primitifs négativement réduits de 04Di et soient N*
et N* respectivement le nombre des idéaux primitifs négativement réduits
et réduits de Od. Alors

(3.6) N_ 3 TV* + N*

L'application \j/ étant compatible avec l'homomorphisme 0 le résultat plus
précis suivant est vrai.

Théorème 3. Soit D 5 (mod 8) un discriminant > 0. Soit C*
une classe d'idéaux au sens strict de Od et G-^C*) son image inverse
par 6. Soit L_ le nombre des idéaux primitifs négativement réduits
de 0-1(C*) et soient L* et L* le nombre des idéaux primitifs
respectivement négativement réduits et réduits de C*. Alors:

(3.7) L_ 3L* + L*
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Nous pouvons maintenant prouver le Théorème 1. On sait que

{3,
si (1.1) n'a pas de solution impaire,

1, si (1.1) a des solutions impaires.

Ce résultat était déjà connu de Gauss ([2], §256, VI); d'autres démonstrations

se trouvent dans [8], §151 et [5], page 172.

Le Théorème 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorèmes 2 et 3 quand
D 1 (mod 8) seront exposés dans un article ultérieur.

§4. Exemples numériques

a) Théorème 2.

Nous donnons les valeurs de AL N* et N* pour tous les D s= 5 (mod 8)

de 5 à 109, et pour 141 et 165 que nous étudierons en b).

D AL N*_ N*

5 4 1 1

13 10 3 1

21 14 4 2

29 16 5 1

37 24 7 3

45 20 6 2

53 22 7 1

61 36 11 3

69 34 10 4

77 26 8 2

85 46 14 4

93 38 12 2

101 36 11 3

109 58 17 7

141 58 18 4

165 60 18 6
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