Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: IDÉAUX NÉGATIVEMENT RÉDUITS D'UN CORPS QUADRATIQUE

RÉEL ET UN PROBLÈME D'EISENSTEIN

Autor: Kaplan, Pierre / LEONARD, Philip A.

Kapitel: §3. L'HOMOMORPHISME ET L'APPLICATION

DOI: https://doi.org/10.5169/seals-60422

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§3. L'HOMOMORPHISME θ et l'Application ψ

Soit C_{Δ} le groupe des classes d'idéaux au sens usuel de l'anneau O_{Δ} . L'homomorphisme θ de C_{Df^2} sur C_D défini et étudié dans [7], §3 est en fait un homomorphisme des groupes des classes d'idéaux au sens strict, de $C_{Df^2}^+$ sur C_D^+ . On vérifie que le Theorem 1 et le Corollary 4 de [7] soient vrais si l'on remplace classe par classe au sens strict et équivalence par équivalence au sens strict: pour adapter la démonstration du Théorème 1 il suffit de ne considérer que des substitutions linéaires de déterminant + 1 (pages 333-334), et pour celle du Corollary 4 il suffit de remarquer que, avec les notations de [7], page 335,

$$N\left(\frac{\sqrt{D'}-b}{2a}\right).N\left(\frac{-\frac{b}{f}+\sqrt{D}}{2c}\right)>0.$$

A partir de maintenant nous considérons le cas où $D \equiv 1 \pmod{4}$ et f = 2.

LEMME 4. Un idéal primitif de O_{4D} s'écrit $I = [a, b + \sqrt{D}]$ avec $b \equiv 1 \pmod{2}$, et soit $a \equiv 1 \pmod{2}$, soit $a \equiv 0 \pmod{4}$. Si C est la classe au sens strict de I, la classe $\theta(C)$ contient l'idéal $\theta(I)$ où $\theta(I)$ est défini par

(3.1)
$$\theta(I) = \begin{cases} \left[a, \frac{b + \sqrt{D}}{2} \right], & si \ a \equiv 1 \pmod{2}, \\ \left[\frac{a}{4}, \frac{b + \sqrt{D}}{2} \right], & si \ a \equiv 0 \pmod{4}, \end{cases}$$

Démonstration. Soit $I = [a, b' + \sqrt{D}]$ un idéal primitif de O_{4D} . On a donc $D = b'^2 - ac$. Si b' est pair alors a est impair, donc $I = [a, b' + a + \sqrt{D}]$, donc on peut toujours supposer $I = [a, b + \sqrt{D}]$ avec b impair. Alors $ac \equiv 0 \pmod{4}$ et, comme (a, 2b, c) = 1, on voit que: soit $a \equiv 1 \pmod{2}$, $c \equiv 0 \pmod{4}$, soit $a \equiv 0 \pmod{4}$, $c \equiv 1 \pmod{2}$.

Le fait que $\theta(I) \in \theta(C)$ est une conséquence immédiate de [7] Theorem 1 et Corollary 4.

Nous supposerons toujours $b \equiv 1 \pmod{2}$ dans l'écriture $I = [a, b + \sqrt{D}]$ d'un idéal primitif de O_{4D} et nous poserons $I = a[1, \varphi]$ avec $\varphi = \frac{b + \sqrt{D}}{a}$ où φ est défini modulo 1.

Soit I associé à φ un idéal de O_Δ ($\Delta=D$ ou 4D). Nous noterons I' et φ' l'idéal et le nombre associés obtenus à partir de I et φ par une étape de réduction négative, c'est-à-dire $\varphi'=\frac{1}{[\varphi+1]-\varphi}$. Nous avons

PROPOSITION 6. Soit $I = a[1, \varphi]$ un idéal primitif négativement réduit de O_{4D} . Si $a \equiv 1 \pmod{2}$ et si $\theta(I)$ n'est pas négativement réduit alors $(\theta(I))'$ est négativement réduit. Si $a \equiv 0 \pmod{4}$, $\theta(I)$ est négativement réduit.

Démonstration. D'après le Lemme 2 on a $\varphi + [-\bar{\varphi}] > 0$. Si $a \equiv 1 \pmod{2}$, $\theta(I) = a \left[1, \frac{\varphi}{2}\right]$ est négativement réduit si, et seulement si, $\frac{\varphi}{2} + \left[\frac{-\bar{\varphi}}{2}\right] > 0$. Si $\theta(I)$ n'est pas négativement réduit on a simultanément

(3.2)
$$\varphi + [-\bar{\varphi}] > 0, \quad \varphi + 2\left[\frac{-\bar{\varphi}}{2}\right] < 0$$

d'où, comme $[-\bar{\phi}] > 2\left[\frac{-\bar{\phi}}{2}\right]$, on voit que $[-\bar{\phi}] = 2\left[\frac{-\bar{\phi}}{2}\right] + 1$ et

$$(3.3) \qquad \qquad \frac{1}{2} < \frac{-\bar{\varphi}}{2} - \left[\frac{-\bar{\varphi}}{2}\right] < 1.$$

Des inégalités (3.2) on déduit aussi $-\left[\frac{-\bar{\phi}}{2}\right] - \frac{1}{2} < \frac{\phi}{2} < -\left[\frac{-\bar{\phi}}{2}\right]$ d'où

(3.4)
$$\left[\frac{\varphi}{2} + 1\right] = -\left[\frac{-\bar{\varphi}}{2}\right] \text{ avec } 0 < \left[\frac{\varphi}{2} + 1\right] - \frac{\varphi}{2} < \frac{1}{2}.$$

Pour vérifier que $\theta(I)'$ est négativement réduit il suffit de voir que

$$\frac{1}{\left[\frac{\varphi}{2}+1\right]-\frac{\varphi}{2}}+\left[\frac{-1}{-\left[\frac{-\bar{\varphi}}{2}\right]-\frac{\bar{\varphi}}{2}}\right]>0$$

ce qui résulte de (3.3) et (3.4).

Si $a \equiv 0 \pmod{4}$, $\theta(I) = \frac{a}{4}[1, 2\phi]$ est négativement réduit, car $2\phi + [-2\bar{\phi}]$ $\geq 2\phi + 2[-\bar{\phi}] > 0$. Ceci achève de prouver la proposition 6.

Soit maintenant E l'ensemble des idéaux négativement réduits de O_{4D} . Nous considérons la partition suivante de E en trois sous-ensembles E_1 , E_2 , E_3 . Soit $I=a[1,\phi]$ un idéal primitif de O_{4D} , négativement réduit. Alors

$$I \in E_1$$
 si $a \equiv 1 \pmod 2$ et $\theta(I)$ est négativement réduit, $I \in E_2$ si $a \equiv 1 \pmod 2$ et $\theta(I)$ n'est pas négativement réduit, $I \in E_3$ si $a \equiv 0 \pmod 4$.

Soit E^* l'ensemble des idéaux négativement réduits de O_D . Nous définissons une application ψ de E dans E^* de la manière suivante:

$$\psi(I) = \theta(I), \quad \text{si } I \in E_1, \quad \text{ou } I \in E_3,$$

$$\psi(I) = (\theta(I))', \quad \text{si } I \in E_2,$$

de sorte que $\psi(I) \in \theta(C)$, où C désigne la classe de I.

Les propositions suivantes ne sont vraies que si $D \equiv 5 \pmod{8}$. Ce qui distingue ce cas est que, si $D \equiv 5 \pmod{8}$, pour tout idéal $J = \left[a, \frac{b + \sqrt{D}}{2}\right]$ on a $a \equiv c \equiv 1 \pmod{2}$.

PROPOSITION 7. Si $D \equiv 5 \pmod{8}$ la restriction de ψ à E_3 est surjective. L'image réciproque d'un idéal $J \in E^*$ a deux éléments si J est réduit, un seul si J n'est que négativement réduit.

Démonstration. Soit $J=a[1,\omega]$ un élément de E^* . On peut supposer $0<\bar{\omega}<1<\omega$. Les idéaux de $\psi^{-1}(J)$ appartenant à E_3 sont à chercher parmi les idéaux $4a\left[1,\frac{\omega+k}{2}\right]$ où $k\in \mathbb{Z}$, c'est-à-dire parmi les idéaux $I_1=4a\left[1,\frac{\omega}{2}\right]$ et $I_2=4a\left[1,\frac{\omega+1}{2}\right]$. Les idéaux I_1 et I_2 sont primitifs et I_2 est négativement réduit alors que I_1 l'est si, et seulement si, $\omega>2$ ce qui signifie que J est réduit.

PROPOSITION 8. Si $D \equiv 5 \pmod{8}$ les restrictions de ψ à E_1 et à E_2 sont des bijections de E_i (i = 1, 2) sur E^* .

Démonstration. Soit ψ_1 la restriction de ψ à E_1 , et soit $J=a[1,\omega] \in E^*$. On a $\omega + [-\bar{\omega}] > 0$, donc $I=a[1,2\omega]$ est négativement réduit et, comme $a \equiv 1 \pmod{2}$, on a $\theta(I) = J$ et $I \in E_1$, ce qui montre que ψ_1 est surjective. Soit $I_1 = a_1[1, \phi_1]$ un idéal de E_1 tel que $\psi_1(I_1) = J$; alors

 $\theta(I_1) = a_1 \left[1, \frac{\varphi_1}{2} \right] = J$, d'où $a_1 = a$ et $\varphi_1 \equiv 2\omega$ (mod 2), ce qui montre que $I_1 = I$ et que ψ_1 est injective.

Considérons maintenant la restriction ψ_2 de ψ à E_2 . Soit J un idéal de E^* et ω le nombre négativement réduit associé à J. Les idéaux J_- donnant J par une étape de réduction négative sont définis par les nombres $\frac{-1}{\omega + n}$ $(n \in \mathbb{Z})$.

Comme $\frac{-2}{\omega + n}$ est un nombre de discriminant 4D, les idéaux $\psi_2^{-1}(J)$ sont,

parmi les idéaux définis par les nombres $\frac{-2}{\omega + n}$ $(n \in \mathbb{Z})$, ceux qui sont négativement réduits sans que J_{-} le soit, ce qui se traduit par

$$\frac{-1}{\omega+n}+\left[\frac{1}{\bar{\omega}+n}\right]<0\;,\quad \frac{-2}{\omega+n}+\left[\frac{2}{\bar{\omega}+n}\right]>0$$

d'après le lemme 2, c'est-à-dire

$$(3.5) 2\left[\frac{1}{\bar{\omega}+n}\right] < \frac{2}{\omega+n} < \left[\frac{2}{\bar{\omega}+n}\right].$$

Tenant compte de ce que $0 < \bar{\omega} < 1 < \omega$, on vérifie que n = 1 est la seule valeur de n qui satisfait (3.5), ce qui montre que ψ_2 est bijective et achève de prouver la proposition 8.

Des propositions 7 et 8 résulte immédiatement le résultat suivant:

Théorème 2. Soit $D \equiv 5 \pmod{8}$ un discriminant > 0. Soit N_- le nombre des idéaux primitifs négativement réduits de O_{4D} , et soient N_-^* et N^* respectivement le nombre des idéaux primitifs négativement réduits et réduits de O_D . Alors

$$(3.6) N_{-} = 3N_{-}^{*} + N^{*}.$$

L'application ψ étant compatible avec l'homomorphisme θ le résultat plus précis suivant est vrai.

Théorème 3. Soit $D \equiv 5 \pmod{8}$ un discriminant > 0. Soit C^* une classe d'idéaux au sens strict de O_D et $\theta^{-1}(C^*)$ son image inverse par θ . Soit L_- le nombre des idéaux primitifs négativement réduits de $\theta^{-1}(C^*)$ et soient L_-^* et L^* le nombre des idéaux primitifs respectivement négativement réduits et réduits de C^* . Alors:

$$(3.7) L_{-} = 3L^* + L^*.$$

Nous pouvons maintenant prouver le Théorème 1. On sait que

(3.8) Card (Ker
$$\theta$$
) =
$$\begin{cases} 3, & \text{si} & (1.1) \text{ n'a pas de solution impaire,} \\ 1, & \text{si} & (1.1) \text{ a des solutions impaires.} \end{cases}$$

Ce résultat était déjà connu de Gauss ([2], §256, VI); d'autres démonstrations se trouvent dans [8], §151 et [5], page 172.

Le Théorème 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorèmes 2 et 3 quand $D \equiv 1 \pmod{8}$ seront exposés dans un article ultérieur.

§4. Exemples numériques

a) THÉORÈME 2.

Nous donnons les valeurs de N_- , N_-^* et N^* pour tous les $D \equiv 5 \pmod{8}$ de 5 à 109, et pour 141 et 165 que nous étudierons en b).

\dot{D}	N	N^*	N^*
5	4	1	1
13	10	3	1
21	14	4	2
29	16	5	1
37	24	7	3
45	20	6	2
53	22	7	1
61	36	11	3
69	34	10	4
77	26	8	2
85	46	14	4
93	38	12	2
101	36	11	3
109	58	17	7
141	58	18	4
165	60	18	6