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204 P. KAPLAN ET P. A. LEONARD

§3. L’HOMOMORPHISME 6 ET L’APPLICATION \

Soit C, le groupe des classes d’idéaux au sens usuel de ’anneau O,.
L’homomorphisme 6 de Cps2 sur Cp défini et étudié dans [7], §3 est en fait
un homomorphisme des groupes des classes d’idéaux au sens strict, de C}) 12
sur C;. On vérifie que le Theorem 1 et le Corollary 4 de [7] soient vrais si
I’on remplace classe par classe au sens strict et équivalence par équivalence au
sens strict: pour adapter la démonstration du Théoréme 1 il suffit de ne
considérer que des substitutions linéaires de déterminant + 1 (pages 333-334),
et pour celle du Corollary 4 il suffit de remarquer que, avec les notations
de [7], page 335,

b —
V[ ()

A partir de maintenant nous considérons le cas ou D =1 (mod 4) et f = 2.

LEMME 4. Un idéal primitif de O,p s’écrit I = [a, b+ /D] avec
b=1(mod?2), etsoit a=1(mod?2), soit a=0(@mod4). Si C estla
classe au sens strict de I, la classe 0(C) contient ’idéal 6(I) ou 6(I)
est défini par

(1 b+ /DT
a, zlﬁ , sSia=1 (mod 2),
(3.1) 0(l) =
‘a b+ /D]
f,—L/_ . sia=0 (mod 4),
L 14 2

Démonstration. Soit I = [a, b’ + 1/1_)] un idéal primitif de O4sp. On a
donc D=b'?—~ac. Si b’ est pair alors a est impair, donc
I=1[a,b +a+)/D], donc on peut toujours supposer I = [a, b + /D]
avec b impair. Alors ac = 0 (mod 4) et, comme (a, 2b, ¢) = 1, on voit que:
soit @ = 1 (mod 2), ¢ = 0 (mod 4), soit @ = 0 (mod 4), ¢ =1 (mod 2).

Le fait que 6(/) € 6(C) est une conséquence immédiate de [7] Theorem 1
et Corollary 4.

Nous supposerons toujours b = 1 (mod 2) dans ’écriture I = [a, b + /D]

b + 1D

a

d’un idéal primitif de O,p et nous poserons I = a[l, ¢] avec ¢ =

ou ¢ est défini modulo 1.
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’

Soit 7 associé a ¢ un idéal de O, (A = D ou 4D). Nous noterons I’ et ¢
I’idéal et le nombre associés obtenus a partir de I et ¢ par une étape de

1
réduction négative, c’est-a-dire ¢’ = . Nous avons
[ +1] -0

PROPOSITION 6. Soit I = all, ¢] un idéal primitif négativement réduit
de O,p. Si a=1(mod?2) etsi O0() n’est pas négativement réduit alors
(6(1))" est négativement réduit. Si a = 0 (mod 4), 0(I) est négativement
réduit.

Démonstration. D’aprés le Lemme 2 on a ¢ +[—¢]>0. Si

a=1 (mod 2), 0(0) = a[l,%] est négativement réduit si, et seulement

si, %+ _T(p > 0. Si 6(J) n’est pas négativement réduit on a simul-
tanément
_ ~ ¢

3.2) O+ [-0]>0, o+2 —-2—]<0
- _ -0 : _ — ¢
d’ou, comme [— @] > 2 [—2——] , on voit que [— @] =2 [—-2— + 1 et

. -
(3.3) . A Bk

2 2

o s . - 1 — @
Des inégalités (3.2) on déduit aussi — [——9 — — o, 9< B d’ou
2 2 2 2
(3.4) LA =—[19]mmo< L
2 2 2 2 2

Pour vérifier que (/)" est négativement réduit il suffit de voir que

e

ce qui résulte de (3.3) et (3.4).

1
>0

L
2

| -1

, a
Si a = 0 (mod 4), (1) = Z[l’ 2¢] est négativement réduit, car 2¢ + [— 2¢]
220 + 2[~ @] > 0. Ceci achéve de prouver la proposition 6.
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Soit maintenant E ’ensemble des idéaux négativement réduits de O,p.
Nous considérons la partition suivante de E en trois sous-ensembles
E,, E,, E;. Soit I = a[l, @] un idéal primitif de O,p, négativement réduit.
Alors

IeE, si a=1(@mod2) e 6) estnégativement réduit,

IeE, si a=1(@mod2) e 6({) n’estpas négativement réduit,
ITeE; si a=0 (mod4).

Soit E* ’ensemble des idéaux négativement réduits de Op. Nous définissons
une application y de E dans E* de la maniére suivante:

v() =0(), silIeE, oulek;,,
v() = (6)", silek,,

de sorte que y (/) € 6(C), ou C désigne la classe de I.
Les propositions suivantes ne sont vraies que si D =35 (mod 8).
Ce qui distingue ce cas est que, si D=5 (mod 8), pour tout idéal

b+ /D

J = |a, onaa=c=1 (mod 2).

PROPOSITION 7. Si D =35 (mod 8) la restriction de v a FE; est
surjective. L’image réciproque d’un idéal J € E* a deux éléments si J est
réduit, un seul si J n’est que négativement réduit.

Démonstration. Soit J = a[l, ®] un élément de E*. On peut supposer
0<mw<1<wm. Les idéaux de y~!(J) appartenant a E; sont a chercher
o+ Kk

parmi les idéaux 4a[1, ou k e Z, c’est-a-dire parmi les idéaux

o+ 1

® .
I, = 4a[1,5] et I, = 4a[1, . Les idéaux I; et I, sont primitifs

et I, est négativement réduit alors que 7; ’est si, et seulement si, ® > 2 ce qui
signifie que J est réduit.

PROPOSITION 8. Si D = 5 (mod 8) les restrictionsde v a E, eta
E, sont des bijections de E; (i=1,2) sur E*.

Démonstration. Soit y; la restriction de y a E;, et soit J = a[l,w] € E*.
Onaw+ [—w] >0, donc I =all,2w] est négativement réduit et, comme
a=1 (mod 2), on a 6(/)=J et I e E;, ce qui montre que y; est
surjective. Soit I, = a;[1, ¢,] un idéal de E, tel que y;(l;) = J; alors
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0() = a [1,E =J d’ot g, =aet 9, =20 (mod 2), ce qui montre que
2

I, = I et que y; est injective.

Considérons maintenant la restriction v, de v a E,. Soit J un idéal de E*
et o le nombre négativement réduit associé a J. Les idéaux J_ donnant J par

une étape de réduction négative sont définis par les nombres (neZ).

@+ n

est un nombre de discriminant 4D, les idéaux vy, Y(J) sont,

Comme
W+ n

parmi les idéaux définis par les nombres (neZ), ceux qui sont néga-

o+ n
tivement réduits sans que J_ le soit, ce qui se traduit par

-1 -2 2
+ | = <0, + |- >0
W+ n o+ n O+ n W+ n
d’aprés le lemme 2, ¢’est-a-dire
1 2 2
(3.5) 2 |- < < |-
W+ n W+ n W+ n

Tenant compte de ce que 0 < ® < 1 < w, on vérifie que n = 1 est la seule
valeur de »n qui satisfait (3.5), ce qui montre que y, est bijective et achéve de
prouver la proposition 8.

Des propositions 7 et 8 résulte immédiatement le résultat suivant:

THEOREME 2. Soit D =5 (mod 8) un discriminant > 0. Soit N_
le nombre des idéaux primitifs négativement réduits de O,p, et soient N*

et N* respectivement le nombre des idéaux primitifs négativement réduits
et réduits de Op. Alors

(3.6) N_ =3N* + N* .

L’application y étant compatible avec I’homomorphisme 8 le résultat plus
précis suivant est vrai.

THEOREME 3. Soit D =5 (mod 8) wun discriminant > 0. Soit C*
une classe d’idéaux au sens strict de Op et 0-1(C*) son image inverse
par 6. -Soit L_ le nombre des idéaux primitifs négativement réduits
de O-1(C*) et soient L* et L* le nombre des idéaux primitifs respec-
tivement négativement réduits et réduits de C*. Alors.

(3.7) L_=3L*%+4+L*,
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Nous pouvons maintenant prouver le Théoréeme 1. On sait que

3, si  (1.1) n’a pas de solution impaire,
(3.8) Card(Ker9) = . _ ‘ .
1, si  (1.1) a des solutions impaires.

Ce résultat était déja connu de Gauss ([2], §256, VI); d’autres démons-
trations se trouvent dans [8], §151 et [5], page 172.
Le Théoréme 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorémes 2 et 3 quand
D =1 (mod 8) seront exposés dans un article ultérieur.

§4. EXEMPLES NUMERIQUES

a) THEOREME 2.

Nous donnons les valeurs de N_, N* et N* pour tous les D = 5 (mod 8)
de 5 a 109, et pour 141 et 165 que nous étudierons en b).

D N_ N* N*
5 4 1 1
13 10 3 1
21 14 4 2
29 16 5 1
37 24 7 3
45 20 6 2
53 22 7 1
61 36 11 3
69 34 10 4
77 26 8 2
85 46 14 4
93 38 12 2
101 36 11 3
109 58 17 7
141 58 18 4
165 60 18 6
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