
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: IDÉAUX NÉGATIVEMENT RÉDUITS D'UN CORPS QUADRATIQUE
RÉEL ET UN PROBLÈME D'EISENSTEIN

Autor: Kaplan, Pierre / LEONARD, Philip A.

Kapitel: §2. Classes d'idéaux au sens strict et réduction négative

DOI: https://doi.org/10.5169/seals-60422

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-60422
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


196 P. KAPLAN ET P. A. LEONARD

où / est la longueur de la période d'une classe ambige de discriminant 4D et

/* celle de son image par l'homomorphisme ô du groupe des classes de

discriminant 4D sur le groupe des classes de discriminant D défini dans [7].
La définition de 0 est rappelée ci-dessous (Lemme 4).

Le but de ce travail est de montrer comment la méthode de [7], c'est-à-dire
l'utilisation des idéaux des anneaux Od et 04D, permet de généraliser la
condition (1.4) de manière analogue à (1.5), et ceci tout en mettant bien en

évidence l'intérêt du développement négatif en fraction continue introduit par
Mimura [9]. Nous prouvons le résultat suivant:

Théorème 1. Soit D un nombre positif, congru à 5 modulo 8. Soit C
une classe d'idéaux au sens strict de l'ordre 04D et 0(C) son image par
l'homomorphisme 0. Soit l_ (respectivement l*_) le nombre des idéaux

primitifs négativement réduits de C (respectivement de 0(C),) et /* le

nombre des idéaux primitifs réduits de 0(C). Alors l'équation (1.1) a des

solutions impaires si, et seulement si,

(1.6) /_ 3/! + /*

Dans la section suivante (§2) nous allons rappeler ou définir les notions
intervenant dans l'énoncé du Théorème 1 et exposer la théorie des idéaux

négativement réduits et de leurs périodes, pour laquelle il ne semble pas exister
de référence accessible.

Dans la troisième section nous prouvons le Théorème 1 après avoir prouvé
deux résultats (Théorèmes 2 et 3) permettant de relier les nombres des idéaux

primitifs négativement réduits de 04D et Od avec le nombre des idéaux

primitifs réduits de Od.
Nous terminons en donnant des exemples numériques (§4).

§2. Classes d'idéaux au sens strict et réduction négative

Soit A > 0 un discriminant. Il existe un discriminant fondamental D0 et

un entier / positif tels que, A D0f2. Soit 0Dq l'anneau des entiers de

Q(]/Dq) et Oa l'anneau des entiers de conducteur /. Les idéaux primitifs de

b l/Âl
l'anneau Oa sont les Z-modules / a, tels que

(2.1) a > 0 - A

4 a
c e Z (a, b, c) 1

b + l/A
c'est-à-dire I — a[l, cp] où cp est déterminé modulo 1 et vérifie (2.1).

2 a
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Nous dirons que l'idéal / et le nombre (p sont associés.

Soit a un nombre non nul de Q(]/Do). Nous désignerons par ä le

conjugué x - y]/DQ de a x + y]/Do où x, y sont des nombres rationnels.

La proposition suivante permet de définir le discriminant de a.

Proposition 1. Soit a un nombre non nul de QQ/Do). Il existe des

b + f]/Do
entiers f > 0, a > 0, b tels que a où a et b vérifient (2.1)

2 a

avec À f2D0. Les nombres f, a et b sont déterminés par a.

Définition. Le nombre À /2D0 est le discriminant de a.

Pour prouver la proposition 1, nous nous appuierons sur le lemme suivant:

n x + y]/D~o X + Y]/Dq
Lemme 1. Soient a avec (x, y, z) 1

z Z
et z,Z> 0. Alors il existe un entier h > 0 tel que X hx, Y hy,
Z hz.

Démonstration. Posons x d'x\ z d'z' d"z'\ y d"y" avec

(x\ z') «= (y", z") — (df, d") 1, et d'et d" > 0. Alors on voit qu'il existe
k > 0 tel que z' kd", z" kd' d'où z kd'd".

D'autre part on a xZ zX et yZ zY d'où x'Z kd"X et j"Z kd' Y.
Comme (x7, kd") (y", kd') 1 on voit qu'il existe des entiers X' et Y" tels
que X x'X' et Y y" Y", d'où résulte Z kd"X' kd'Y". Comme
(d\ d") 1 on voit qu'il existe h tel que X' hd\ Y" hd" ce qui donne
X — hd'x', F hd"y", Z hkd'd", ce qu'il fallait prouver.

Démonstration de la proposition 1

D après le lemme 1 les entiers 2 a, f et Z? sont à chercher parmi les
nombres hz, hy et hx, et il suffit de montrer qu'il existe un et un seul
entier h > 0 tel que

P)ç^y 2 x2
(2-2) h c e Z,(hz,2 2c) 2

2z

D0y2 - x2 r
osons — - avec s > 0 et (r, s) 1. Les solutions de la premièrezz s

égalité (2.2) sont h ks et alors c kr, où, d'après la seconde égalité (2.2),
k est déterminé par {ksz, 2ksy, 2kr) 2. Si un nombre premier p divisait sz,
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sy et r, il diviserait y, z et D$y2 - x2, donc a, y et z, ce qui n'est pas possible.
Donc si sz est pair, la valeur de k qui convient est 1 et, si sz est impair, la
valeur de k qui convient est k 2. Ceci achève de prouver la proposition 1.

De la proposition 1 résulte immédiatement le résultat suivant

Corollaire 1. Les nombres associés aux idéaux primitifs de l'anneau
Oa sont les nombres de discriminant À.

Deux idéaux I a[ 1, (p] et J b[\, \j/] sont dits équivalents au sens strict
s'il existe p e QQ/Dq) tel que N(p) >0 et J pl. D'après [7], Proposition

3, c'est le cas si, et seulement si, il existe p,q,r,se Z tels que

pcp + q
ps - qr 1 et \j/ On dit alors que cp et \j/ sont strictement

équivalents. L'équivalence stricte implique l'équivalence usuelle, et l'on sait

qu'un idéal J b[\, \j/] équivalent à un idéal I a[\, cp] primitif de Oa est

un idéal primitif de Oa ([7], Corollary 3); ceci montre que le discriminant
d'un nombre est conservé par équivalence.

L'ensemble des classes d'équivalence d'idéaux pour l'équivalence stricte

contenant des idéaux primitifs forme un groupe fini CA pour la multiplication

induite par la multiplication des idéaux, isomorphe au groupe des classes

de formes quadratiques binaires primitives de discriminant À pour la

composition.
Passons maintenant à la réduction. Un nombre (p de discriminant À est dit

réduit si

L'idéal I a[ 1, (p] est dit réduit (respectivement négativement réduit) si l'on
peut choisir (p modulo 1 de manière à vérifier (2.3) (respectivement 2.4). Alors

on voit que

Proposition 2. Tout idéal réduit est négativement réduit.

Démonstration. Soit / a [1, (p] où cp vérifie (2.3). Alors / a[ 1, (p + 1]

où (p + 1 vérifie (2.4).
Plus généralement on a

rcp + 6"

(2.3)

négativement réduit si

(2.4)

- 1 < (p < 0 1 < cp

0 < cp < 1 < cp

Lemme 2. L'idéal 7=a[l,cp] est réduit si9 et seulement si,

cp + [ - cp] > 1, négativement réduit si, et seulement si, cp + [- cp] > 0.
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Démonstration. Il suffit de remarquer que, pour tout nombre réel (p non
entier on a -l<(p + [-(p]<OetO<(p + [-(p] + l<l.

Tout idéal primitif réduit (respectivement négativement réduit) / de Oa

s'écrit de manière unique I a[l,cp] où cp est un nombre réduit
(respectivement négativement réduit) de ß(]/So) de discriminant À. Nous dirons

que l'idéal I et le nombre (p sont associés.

Il est bien connu que le nombre des idéaux réduits primitifs de Oa est fini.
La proposition suivante montre qu'il en est de même pour les idéaux

négativement réduits.

Proposition 3. L'ensemble des nombres négativement réduits de
discriminant A donné est un ensemble fini. Le nombre des idéaux négativement
réduits primitifs de Oa est fini.

Démonstration. Pour montrer les deux assertions de la Proposition 3, il
suffit de montrer que le nombre des solutions {b, at c) de

_> b — ]/Ä b + |/Â
(2.5) 0 < < 1 < — b2 A + 4ac

2 a la
est fini. Comme (2.5) implique

(2.6) 0 < b - ]/A < 2a,]/Â

nous posons 2a b - a,2c b- a'; alors A + 4 entraîne

(2.7) A + aa' a + a')
D'après (2.6) on a b>]/Â > | a |, | a' |. De plus a a' A (mod 2),
donc a + a' 0 (mod 2), et a + a' ^ 2.

Si aa' 0 alors A est pair et (2.7) montre que As 0 (mod 2b) donc H-2
Si aa' > 0 alors A < A + aa' b(a+ a') < 2A. Donc a et a' > 0.

Si a a ' 1 alors b ; sinon a + a ' ^ 4 donc —
2 2

'

Si aa < 0 alors 0 < A + aa' — b{a+ a') < A, donc <! —
2

'

Ainsi )/Â < b—si A est pair, ]/Â < ^ si A est impair, ce

qui prouve que le nombre des b, et par suite celui des triplets (b, c, a), satisfaisant
à (2.5) est fini. Ceci termine la démonstration de la proposition 3.

Considérons maintenant le processus de réduction négative.
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bo + j/A
Soit (po (a0 > 0) un nombre de discriminant À. Supposons cp„

2a0

défini; nous définissons cp„ +1 par

(2.8) Qn [<Pn + 1] <P* Qn ~
<Pw+ 1

On voit que cp„ + j est strictement équivalent à cp„ et que (p„ > 1 et qn ^ 2 pour
1. De plus on a

1

cpo — Qo

Q\
Q2 ~

(2.9)

Qn
<P/i + 1

Inversement cp0 étant donné la condition (p„ > 1 (n ^ 1) et (2.9) définissent les

qt de manière unique.
Si (pw est négativement réduit alors 0 < (p„ < 1 donc, comme qn ^ 2, on a

0 < (p„ + i < 1 ce qui montre que $n+\ est négativement réduit.
bn + ]/Â

Au nombre cp„
2an

In @n[ 1
> tyn ]

(an > 0) est associé l'idéal In tel que

bn + ]/Â

et tous les idéaux In sont strictement équivalents entre eux.
Comme (Proposition 3) le nombre des nombres négativement réduits de

discriminant À est fini on voit, comme dans la théorie des idéaux réduits, que
les nombres cp négativement réduits de discriminant À, ainsi que les idéaux /
associés se répartissent en un nombre fini de périodes.

Définissons maintenant deux suites d'entiers An et Bn (n ^ - 2) par

(2.10)
A_2 0 A-1 T" 1 An qnAn — \ An-i
B-2 — 1 B-i 0 Bn qnBn- j — Bn_2 •

On vérifie par récurrence sur n les relations suivantes

Bn- 2<P0 — An-2 An - \ tyn ~ An- 2

(2.11) <p„
B,2 — i (po — An-\

<Po

<pw - Bn_
(n> 0)
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(2.12) AnBn.x-An-iBn=-1 (n>- 1)

(2.13) (pi • • • (p„ - 5„_i(p„ - 5„-2 i (O 1) >

(2.14) ß„ > ß„_ i + 1 ^ 1 d'où ^ n + 1 (« ^ 0)

- 1

(2.15) An - (p <,B„=Bn Q« + 1 Bn - 1

Définissons le nombre 0„ par

(2.16) Ö« Qi ...<p* •

Nous pouvons maintenant montrer, avec les notations qui précèdent, la

Proposition 4. Pour n assez grand le nombre q„ et l'idéal In

sont négativement réduits. Le nombre 0„ tend vers + oo quand n tend

vers + oo.

Démonstration. Soit q>o ~~~—avec ßo > 0. Nous avons
2a0

(Pj —-— >1 et (Pi — donc 0 < <pi < cpi.
qo — cpo Qo — Qo + (cpo — Qo)

Remplaçant q0 par cpi si nécessaire nous pouvons supposer 0 < (p0 < <Po -

De (2.11) et (2.12) on déduit

<P» - P«
Qo ~ Qo 1

(Bn-\tyn - Bn-2) (Bn-ityn ~ Bn-2)
*

Supposons Q„ > 1. D'après (2.14) on a Bn_{g)n - Bn_2 > l et Bn_i

^ Bn_2 + 1, donc

(pÄ - 1 1 ^1^1(Po - Qo < < ^ -
£„_iQ„ - Bn_ i + 1 1 Bn_{ n

Bn- î H

Qfl - 1

ce qui n'est pas possible pour n assez grand donc il existe n0 tel que, à partir
de n0, (p„ est négativement réduit.

Pour montrer que 0„ -> + oo quand n -> + oo, il suffit de remarquer que
Q/ > 1 pour i ^ 1 et que (p, ne prend qu'un nombre fini de valeurs pour
/ ^ n0. Ceci achève de prouver la Proposition 4.

L'étape suivante consiste à montrer que deux nombres strictement
équivalents négativement réduits sont dans la même période négative. Nous
adaptons le raisonnement classique (voir par exemple [3] §10-6, 10-10, 10-11
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ou [11] §29) à notre objet en nous référant à [11], Satz 5.2, qui dit que chaque
nombre réel a un développement en fraction continue négative bien déterminé.
Nous commençons par le

P\\f - Q
Lemme 3. Si cpo avec PS - QR - 1, R > S > 0, et

R\\f - S

\1/ > 1 alors il existe n tel que xp q>„.

Démonstration. Nous appliquons le processus (2.8), (2.9) au nombre

P
rationnel — <pj. Dans ce cas (2.8) s'écrit successivement

R

P
P q'0R - n (po — Qo

R

P- + 1

R
0 < ri < R

g
R - r2 « CPÎ — q[ [cpj + 1] ^ 2 0 ^ r2 < rx

n

1 Qnrn rn + 1 > (p ^ Qn ~ l^n '^A] ^ 2 0^rn+i</"„,
A"*

ï"N- \ — Q.Nrn ~ rn+\ * § N ~ — Q. N > Q N ~ + 1] ^ 2 /> + i — 0

Le fait qu'il existe N" tel que />+1 0 vient de ce que la suite des entiers

positifs o est strictement décroissante. Tenant compte de (2.11) et (2.10) il
vient

P
_

AN-\q'N — Am-2
_

AN

R Bn- \QN ~ BN-2 Bn

puis, comme (P, R) (AN,BN) 1, R et BN > 0 on voit que P ANf
R BN d'où - 1 PS - RQ PBm-\ - RAm-i* donc P{S-BN-1)

R(Q-An^).
Comme (P, R) 1, i? divise S — Bn~i, ce qui n'est possible que si

S car 0 < S < i? et 0 ^ < BN R. Donc on a:

"r •

BN\\f — Bm~ i
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Ceci s'écrit

1

<Po Qq ~
1

q[
Qi -

î

î
q'n--

v

c'est-à-dire (2.9) pour TV n où qt est remplacé par q\ et cp^+i par \j/. En

développant \\f en fraction continue négative on trouve le développement de

cp0 en fraction continue négative ([11], Satz 5.2), donc q\ qt et \p (p^+i,
ce qui démontre le lemme 3.

Proposition 5. Deux nombres négativement réduits strictement
équivalents sont dans la même période.

û(p - b
Démonstration. Supposons \j/ avec a, b, c, d entiers tels que

ccp — d
ad - bc — 1, où nous pouvons supposer ccp - d > 0 en changeant, si

nécessaire, les signes de a, b, c et d. Développons cp cp0 en fraction continue
négative et remplaçons; il vient

E'cPrt - Q
V — avec R cAn_1 - dßn_l9S cAn_2 ~ dBn_2

R<Vn - S

D'après (2.13) et (2.15) on SLÄn_{ <pBn^i — An_2 cpBn_2 —
G/î - 1 6/7 _ 2

d'où

R5„_i(c(p - d) - -L- S 5„_2(c(p - —
0/1-1 Ô/Î-2

Comme Bnl ^ n., ^ n - 1, Bn_x^ Bn-2 + 1 et que et
0« — 2 + 00 quand n + oo, on voit que pour n assez grand R > S > 0 ce

qui, d'après le Lemme 3, montre que (p„ est dans la période de \p et prouve
la Proposition 5.

Il
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