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196 P. KAPLAN ET P. A. LEONARD

ou / est 1a longueur de la période d’une classe ambige de discriminant 4D et
[* celle de son image par I’homomorphisme 6 du groupe des classes de
discriminant 4D sur le groupe des classes de discriminant D défini dans [7].
La définition de 8 est rappelée ci-dessous (Lemme 4).

Le but de ce travail est de montrer comment la méthode de [7], c’est-a-dire
I’utilisation des idéaux des anneaux Op et O,p, permet de généraliser la
condition (1.4) de maniére analogue a (1.5), et ceci tout en mettant bien en
¢vidence I’intérét du développement négatif en fraction continue introduit par
Mimura [9]. Nous prouvons le résultat suivant:

THEOREME 1. Soit D un nombre positif, congru a 5 modulo 8. Soit C
une classe d’idéaux au sens strict de ’ordre O,p et 0(C) son image par
I’homomorphisme 9. Soit |_ (respectivement [*) le nombre des idéaux
primitifs négativement réduits de C (respectivement de 0(C)) et I* le
nombre des idéaux primitifs réduits de 0(C). Alors I’équation (1.1) a des
solutions impaires si, et seulement si,

(1.6) [ =30" +1*.

Dans la section suivante (§2) nous allons rappeler ou définir les notions
intervenant dans I’énoncé du Théoréme 1 et exposer la théorie des idéaux
négativement réduits et de leurs périodes, pour laquelle il ne semble pas exister
de référence accessible.

Dans la troisiéme section nous prouvons le Théoréme 1 aprés avoir prouvé
deux résultats (Théorémes 2 et 3) permettant de relier les nombres des idéaux
primitifs négativement réduits de O4p et Op avec le nombre des idéaux
primitifs réduits de Op.

Nous terminons en donnant des exemples numériques (§4).

§2. CLASSES D’IDEAUX AU SENS STRICT ET REDUCTION NEGATIVE

Soit A > 0 un discriminant. Il existe un discriminant fondamental D, et
un entier f positif tels que A = Dy f?. Soit Op, ’anneau des entiers de
Q(/D,) et O, ’anneau des entiers de conducteur f. Les idéaux primitifs de

b+ /A
I’anneau O, sont les Z-modules [/ = {a, ——| tels que
b — A
(2.1) a>0, ——=ceZ, (abc)=1,
4a
b+ VA
c’est-a-dire I = a[l, ¢] ou ¢ = —— est déterminé modulo 1 et vérifie (2.1).

2a
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Nous dirons que ’idéal I et le nombre ¢ sont associés.

Soit o un nombre non nul de Q(/D,). Nous désignerons par a le
conjugué x — y}/D, de a = x + y1/D, ou x, y sont des nombres rationnels.
La proposition suivante permet de définir le discriminant de a.

PROPOSITION 1. Soit o un nombre non nul de Q(]/Eo). 1! existe des
b+ f1/Dy
2a
avec A = f?D,. Les nombres f, a et b sont déterminés par «q.

entiers f>0,a>0,b ftelsque o = ou a et b vérifient (2.1)

DEFINITION. Le nombre A = f2D, est le discriminant de «.

Pour prouver la proposition 1, nous nous appuierons sur le lemme suivant:

x+y/Dy X+ Y|/D
LEMME 1. Soient o = IV = ~ 0 , avec (x,y,2) =1

Z
et z,Z>0. Alors il existe un entier h >0 tel que X = hx, Y = hy,

Z = hz.

Démonstration. Posons x=d’'x’, z=d'z’=d"z"”, y=d"y"” avec
x,z2)=0",2")=({d',d"”") =1,etd et d”’ > 0. Alors on voit qu’il existe
k>0tel que 2’ = kd"”, 2" = kd' ol z = kd'd” .

D’autre partonaxZ = zXet yZ = zYdoux'Z = kd"'Xet y"'Z = kd'Y.
Comme (x’, kd”") = (¥, kd’) = 1 on voit qu’il existe des entiers X’ et Y tels
que X =x'X"et Y=y"Y", d’ou résulte Z = kd”" X' = kd'Y". Comme
(d’,d"”) =1 on voit qu’il existe & tel que X' = hd’, Y = hd"’ ce qui donne
X =hd'x", Y="nd"y", Z=hkd'd"”, ce qu’il fallait prouver.

Démonstration de la proposition 1

D’apreés le lemme 1 les entiers 2a, f et b sont & chercher parmi les
nombres Az, hy et hx, et il suffit de montrer qu’il existe un et un seul
entier A > 0 tel que

D y2 _ xZ
(2.2) h—"— " —ceZ, (hz2hy,20)=2.
2z
Do_y2 — x? r
Posons —T =-avecs >0 et (r,5) = 1. Les solutions de la premiére
s

egalité (2.2) sont h = ks et alors ¢ = kr, ou, d’apres la seconde égalité (2.2),
k est déterminé par (ksz, 2ksy, 2kr) = 2. Si un nombre premier p divisait sz,
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sy et r, il diviserait y, z et Doy? — x2, donc x, y et z, ce qui n’est pas possible.

Donc si sz est pair, la valeur de k£ qui convient est 1 et, si sz est impair, la

valeur de k qui convient est kK = 2. Ceci achéve de prouver la proposition 1.
De la proposition 1 résulte immédiatement le résultat suivant

COROLLAIRE 1. Les nombres associés aux idéaux primitifs de [’anneau
O, sont les nombres de discriminant A.

Deux idéaux I = a1, ¢] et J = b[1, y] sont dits équivalents au sens strict
s’1l existe p € Q(/Dy) tel que N(p) >0 et J= pl. D’aprés [7], Propo-
sition 3, c’est le cas si, et seulement si, il existe p, g,r,s € Z tels que

ps—qr=1 et y =w. On dit alors que ¢ et y sont strictement
re + s

¢quivalents. L’équivalence stricte implique 1’équivalence usuelle, et I’on sait

qu’un idéal J = b[1, y] équivalent a un idéal I = a[l, ¢] primitif de O4 est

un idéal primitif de O, ([7], Corollary 3); ceci montre que le discriminant

d’un nombre est conservé par équivalence.

L’ensemble des classes d’équivalence d’idéaux pour I’équivalence stricte
contenant des idéaux primitifs forme un groupe fini C, pour la multiplica-
tion induite par la multiplication des idéaux, isomorphe au groupe des classes
de formes quadratiques binaires primitives de discriminant A pour la
composition.

Passons maintenant a la réduction. Un nombre ¢ de discriminant A est dit
réduit si

(2.3) —l<oep<0, 1<o,
négativement réduit si
(2.4) O<op<l<o.

L’idéal I = a[l, @] est dit réduit (respectivement négativement réduit) si 1’on
peut choisir ¢ modulo 1 de maniére a vérifier (2.3) (respectivement 2.4). Alors
on voit que

PROPOSITION 2. Tout idéal réduit est négativement réduit.

Démonstration. Soit I = a[l, ¢] ou ¢ vérifie (2.3). Alors I = a[l, ¢ + 1]
ou ¢ + 1 veérifie (2.4).
Plus généralement on a

LEMME 2. L’idéal I = all,p] est réduit si, et seulement si,
o + [— @] > 1, négativement réduit si, et seulement si, ¢ + [— ¢] > 0.
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Démonstration. 11 suffit de remarquer que, pour tout nombre réel ¢ non
entierona —1<@o+[-0¢]<0et0O<o+[-0] +1<1.

Tout idéal primitif réduit (respectivement négativement réduit) 7 de O,
s’écrit de maniere unique I = a[l, ] ou @ est un nombre réduit (respec-
tivement négativement réduit) de Q(}/D,) de discriminant A. Nous dirons
que ’idéal I et le nombre ¢ sont associés.

I1 est bien connu que le nombre des idéaux réduits primitifs de O, est fini.
La proposition suivante montre qu’il en est de méme pour les idéaux
négativement réduits.

PROPOSITION 3. L’ensemble des nombres négativement réduits de discri-
minant A donné est un ensemble fini. Le nombre des idéaux négativement
réduits primitifs de O, est fini.

Démonstration. Pour montrer les deux assertions de la Proposition 3, il
suffit de montrer que le nombre des solutions (b, g, ¢) de

b—-VA b+ VA
<_L‘<1<l

(2.5) 0 , b?= A+ 4ac
2a 2a

est fini. Comme (2.5) implique

(2.6) 0<b-}VA<2a, 2c<b+]A

nous posons 2a = b — a, 2¢c = b — a’; alors b2 = A + 4ac entraine
2.7) A+oaa" =b(a+a’).

D’apres (2.6) on a b > /A >|a|, |a’|. Deplus o =o' =b = A (mod 2),
donc a + o’ =0 (mod 2), et a + o’ > 2.

Siao’ = 0 alors A est pair et (2.7) montre que A= 0 (mod 25b) donc b <

A
2

Si aa’” >0 alors A<A+ao"=b(o+a’)<2A. Donc o et o> 0.
A+1

) , A
;stnon o + a” > 4 donec b < — .
2

Sia=a’"=1 alors b =

Siaa’"<Oalors 0 <A+ oaa’=b(0+0a’) <A, doncb<é.
2

A+1

. A .
Ainsi /A < b < > si A est pair, /A < b < si A est impair, ce

qui prouve que le nombre des b, et par suite celui des triplets (b, ¢, a), satisfai-
sant & (2.5) est fini. Ceci termine la démonstration de la proposition 3.
Considérons maintenant le processus de réduction négative.
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bo + /A

Qo
défini; nous définissons ¢, ., ; par

Soit ¢q = (ag > 0) un nombre de discriminant A. Supposons ¢,

1
On+1 .

(2.8) gn =0, +1], ©,=¢g,—

On voit que ¢, ,; est strictement équivalent a ¢, et que ¢, > 1 et g, = 2 pour
n>1. De plus on a

©®o = qo —

(2.9

dn —
On+1

Inversement @, étant donné la condition ¢, > 1 (n > 1) et (2.9) définissent les
g; de maniere unique.

Si ¢, est négativement réduit alors 0 < ¢, < 1 donc, comme g, > 2, on a
0 < @,+1 <1 ce qui montre que ¢, est négativement réduit.
b, + /A

2a

n

Au nombre ¢, = (a, > 0) est associé I’idéal I, tel que

I, = a,[1, 0,] = [%M] ;
2
et tous les idéaux I, sont strictement équivalents entre eux.

Comme (Proposition 3) le nombre des nombres négativement réduits de
discriminant A est fini on voit, comme dans la théorie des idéaux réduits, que
les nombres ¢ négativement réduits de discriminant A, ainsi que les idéaux /
associés se répartissent en un nombre fini de périodes.

Définissons maintenant deux suites d’entiers A, et B,(n > — 2) par

A_,=0, A =+1, A, =q,A,_,—A,_2,
(2.10) 2 1= 4n 1 2
B_2= -1 5 B_]'-:O, BHZQan—l*Bn—Z-
On vérifie par récurrence sur n les relations suivantes
B, _ —A,_ An_ 10, — A,_
@11) g, =22 g LD 2, (20,

Bn-—l(pO_An—l Bn—l(pn_'Bn—Z ’
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WV
|

(212) Aan—l - An—an = —1 ’ (n

(2.13) @O " Qn=By 10— B2, @21,

(2.14) B,>B, ,+1>1, douB,2n+1, (n20),
—1

By@ns1 — Bu1

(2.15) Ap — @By =

Définissons le nombre 0, par

(2.16) 0,=¢1...0, .

Nous pouvons maintenant montrer, avec les notations qui précedent, la

PROPOSITION 4. Pour n assez grand le nombre ¢, et l'idéal I,
sont négativement réduits. Le nombre 6, tend vers + o quand n tend
vers + .

bo + VA

2ao

1 _ 1 _

>1 e ¢, = ——, donc O0<@;<®.
go — Qo Go — ®o + (Po — Vo) )

Remplacant @, par @, si nécessaire nous pouvons supposer 0 < @ < @o.

De (2.11) et (2.12) on déduit

Démonstration. Soit @ = avec ay,> 0. Nous avons

0 =

(p (T) _ (pn_(bn
0o~ Yo — _
(Bn—l(pn - Bn—2) (Bn—lq)n - Bn—2)

Supposons @, > 1. D’aprés (2.14) on a B,_ ¢, — B,_,>1 et B,_;
> B,_,+ 1, donc

0, — 1 1 1 1

= < £ =

Bn—l(pn_Bn—l+1 B + 1 Bn—l n
" O, — 1

ce qui n’est pas possible pour n assez grand donc il existe n, tel que, a partir
de ny, ¢, est négativement réduit.

Pour montrer que 8, &> + o quand n = + oo, il suffit de remarquer que
@; > 1 pour i > 1 et que ¢; ne prend qu’un nombre fini de valeurs pour
i > ny. Ceci achéve de prouver la Proposition 4.

L’étape suivante consiste a montrer que deux nombres strictement
équivalents négativement réduits sont dans la méme période négative. Nous
adaptons le raisonnement classique (voir par exemple [3] §10-6, 10-10, 10-11

Po— Qo <
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ou [11] §29) a notre objet en nous référant a [11], Satz 5.2, qui dit que chaque
nombre réel a un développement en fraction continue négative bien déterminé.
Nous commengons par le

LEMME 3. Si wozﬁ avec PS— QR = -1, R>S5>0, et
w.._

v > 1 alors il existe n tel que y = @,.

Démonstration. Nous appliquons le processus (2.8), (2.9) au nombre

. P
rationnel E = @,. Dans ce cas (2.8) s’écrit successivement

P
P=gqR —r, P0=7> o= E+1 , 0<nrn <R,
14 R ¥ . 7
R—QIrl ry, (plz—-— qlz[(pl+1]>29 O<r2<rls
r
’ Foy
Faet = duTn = Tneis @r=—""", gi=lp,+ 1122, 0< rpi<r,,
'y
V4 7 rN_l 7 7 7
IN-1=QqnNIn — Ths1s Oy = =gy, dn=1l0n+11 22, rv;1 =0.
Irn

Le fait qu’il existe N tel que ry,.; = 0 vient de ce que la suite des entiers
positifs r; est strictement décroissante. Tenant compte de (2.11) et (2.10) il
vient

P Ay_1qy— An-» A

R Bn-1gy — Bn_> BN,

puis, comme (P, R) = (Ay,By) =1, R et By> 0 on voit que P = Ay,
R=By dou —-1=PS—-RQ=PBy_1— RAN_,, donc P(S— By_1)
= R(Q —An-1)-

Comme (P,R) =1, R divise S — By_1, ce qui n’est possible que si
S=By_;car0<S<RetO0<By_1<By=R.Donc on a:

Ayy — An_1

®Po = .
Byy — By_;
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Ceci s’écrit

c’est-a-dire (2.9) pour N = n ou g; est remplacé par g; ef Oy Par y. En
développant y en fraction continue négative on trouve le développement de
¢ en fraction continue négative ([11], Satz 5.2), donc g/ = g; et ¥ = QOn+1,
ce qui démontre le lemme 3.

PROPOSITION 5. Deux nombres négativement réduits strictement
équivalents sont dans la méme période.

ap — b .
Démonstration. Supposons Yy = @ y avec a, b, ¢, d entiers tels que
cQ —
ad — bc = — 1, ou nous pouvons supposer c¢ — d > 0 en changeant, si

nécessaire, les signes de a, b, c et d. Développons ¢ = @, en fraction continue
négative et remplacons; il vient

-Pwn“é?
Yy =———avecR=cA,.,—-dB,_,S=cA,_, —dB,_, .
Rop, — S
1
D’apres (2.13) et 2.15) ona A,_; = ¢B,_; — s An_2 = @B,_, — 5 ,
n—1 n—-2

d’ou

R =B, (co—d) —

» 8= B,_2(co —d) -

n—1 en—z

Comme B,_,>n, B, ,>n-1, B,_,>B,_,+1 et que 06,_; et
0,2 = + o quand n = + o, on voit que pour z assez grand R > S > 0 ce

qui, d’aprés le Lemme 3, montre que @, est dans la période de v et prouve
la Proposition 5.
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