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IDEAUX NEGATIVEMENT REDUITS D’UN CORPS
QUADRATIQUE REEL ET UN PROBLEME D’EISENSTEIN

par Pierre KAPLAN et Philip A. LEONARD

§1. INTRODUCTION

Le probléme d’Eisenstein [1] dont il sera question ici est la détermination
des entiers positifs D = 5 (mod 8) tels que 1’équation

(1.1) X?2—-DY?>=4
a des solutions impaires. Si 1’équation
(1.2) T - DU?*= -4

a des solutions entiéres, les longueurs /, et /; des périodes des dévelop-
pements en fraction continue de /D et (1 + /D) /2 respectivement sont des
nombres impairs et I’on sait ([6]) que, alors, (1.1) a des solutions impaires si,
et seulement si,

(1.3) [y =15 (mod 4) .

Récemment Y. Mimura ([9]) a eu I’idée treés intéressante et originale
d’introduire le développement négatif en fraction continue de nombres
irrationnels quadratiques réels et les périodes de ceux qui sont négativement

réduits pour montrer que [’équation (1.1) a des solutions impaires si, et
seulement si,

ES

[
(14) 10— = 315(— + 7:‘

ou /o- et /;- sont les longueurs des périodes négatives de /D et (1 + /D) /2
respectivement, et k = 1 ou 2 suivant que (1.2) a, ou non, des solutions.

En fait, la condition (1.3) avait été généralisée et pouvait étre remplacée
([4]) par

(1.5) [ = [* (mod 4)
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ou / est 1a longueur de la période d’une classe ambige de discriminant 4D et
[* celle de son image par I’homomorphisme 6 du groupe des classes de
discriminant 4D sur le groupe des classes de discriminant D défini dans [7].
La définition de 8 est rappelée ci-dessous (Lemme 4).

Le but de ce travail est de montrer comment la méthode de [7], c’est-a-dire
I’utilisation des idéaux des anneaux Op et O,p, permet de généraliser la
condition (1.4) de maniére analogue a (1.5), et ceci tout en mettant bien en
¢vidence I’intérét du développement négatif en fraction continue introduit par
Mimura [9]. Nous prouvons le résultat suivant:

THEOREME 1. Soit D un nombre positif, congru a 5 modulo 8. Soit C
une classe d’idéaux au sens strict de ’ordre O,p et 0(C) son image par
I’homomorphisme 9. Soit |_ (respectivement [*) le nombre des idéaux
primitifs négativement réduits de C (respectivement de 0(C)) et I* le
nombre des idéaux primitifs réduits de 0(C). Alors I’équation (1.1) a des
solutions impaires si, et seulement si,

(1.6) [ =30" +1*.

Dans la section suivante (§2) nous allons rappeler ou définir les notions
intervenant dans I’énoncé du Théoréme 1 et exposer la théorie des idéaux
négativement réduits et de leurs périodes, pour laquelle il ne semble pas exister
de référence accessible.

Dans la troisiéme section nous prouvons le Théoréme 1 aprés avoir prouvé
deux résultats (Théorémes 2 et 3) permettant de relier les nombres des idéaux
primitifs négativement réduits de O4p et Op avec le nombre des idéaux
primitifs réduits de Op.

Nous terminons en donnant des exemples numériques (§4).

§2. CLASSES D’IDEAUX AU SENS STRICT ET REDUCTION NEGATIVE

Soit A > 0 un discriminant. Il existe un discriminant fondamental D, et
un entier f positif tels que A = Dy f?. Soit Op, ’anneau des entiers de
Q(/D,) et O, ’anneau des entiers de conducteur f. Les idéaux primitifs de

b+ /A
I’anneau O, sont les Z-modules [/ = {a, ——| tels que
b — A
(2.1) a>0, ——=ceZ, (abc)=1,
4a
b+ VA
c’est-a-dire I = a[l, ¢] ou ¢ = —— est déterminé modulo 1 et vérifie (2.1).

2a
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