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L'Enseignement Mathématique, t. 39 (1993), p. 195-210

IDÉAUX NÉGATIVEMENT RÉDUITS D'UN CORPS

QUADRATIQUE RÉEL ET UN PROBLÈME D'EISENSTEIN

par Pierre Kaplan et Philip A. Leonard

§ 1. Introduction

Le problème d'Eisenstein [1] dont il sera question ici est la détermination

des entiers positifs D 5 (mod 8) tels que l'équation

(1.1) X2 - DY2 4

a des solutions impaires. Si l'équation

(1.2) T2 - DU2 - 4

a des solutions entières, les longueurs /0 et /* des périodes des développements

en fraction continue de \/D et (1 + \/D)/2 respectivement sont des

nombres impairs et l'on sait ([6]) que, alors, (1.1) a des solutions impaires si,

et seulement si,

Récemment Y. Mimura ([9]) a eu l'idée très intéressante et originale
d'introduire le développement négatif en fraction continue de nombres
irrationnels quadratiques réels et les périodes de ceux qui sont négativement
réduits pour montrer que l'équation (1.1) a des solutions impaires si, et

seulement si,

où /0- et /*- sont les longueurs des périodes négatives de \/D et (1 + \/D)/2
respectivement, et k 1 ou 2 suivant que (1.2) a, ou non, des solutions.

En fait, la condition (1.3) avait été généralisée et pouvait être remplacée
([4]) par

(1.3) l0 /* (mod 4)

(1.4) /„- 3/*- + Ù
k

(1.5) / /* (mod 4)
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où / est la longueur de la période d'une classe ambige de discriminant 4D et

/* celle de son image par l'homomorphisme ô du groupe des classes de

discriminant 4D sur le groupe des classes de discriminant D défini dans [7].
La définition de 0 est rappelée ci-dessous (Lemme 4).

Le but de ce travail est de montrer comment la méthode de [7], c'est-à-dire
l'utilisation des idéaux des anneaux Od et 04D, permet de généraliser la
condition (1.4) de manière analogue à (1.5), et ceci tout en mettant bien en

évidence l'intérêt du développement négatif en fraction continue introduit par
Mimura [9]. Nous prouvons le résultat suivant:

Théorème 1. Soit D un nombre positif, congru à 5 modulo 8. Soit C
une classe d'idéaux au sens strict de l'ordre 04D et 0(C) son image par
l'homomorphisme 0. Soit l_ (respectivement l*_) le nombre des idéaux

primitifs négativement réduits de C (respectivement de 0(C),) et /* le

nombre des idéaux primitifs réduits de 0(C). Alors l'équation (1.1) a des

solutions impaires si, et seulement si,

(1.6) /_ 3/! + /*

Dans la section suivante (§2) nous allons rappeler ou définir les notions
intervenant dans l'énoncé du Théorème 1 et exposer la théorie des idéaux

négativement réduits et de leurs périodes, pour laquelle il ne semble pas exister
de référence accessible.

Dans la troisième section nous prouvons le Théorème 1 après avoir prouvé
deux résultats (Théorèmes 2 et 3) permettant de relier les nombres des idéaux

primitifs négativement réduits de 04D et Od avec le nombre des idéaux

primitifs réduits de Od.
Nous terminons en donnant des exemples numériques (§4).

§2. Classes d'idéaux au sens strict et réduction négative

Soit A > 0 un discriminant. Il existe un discriminant fondamental D0 et

un entier / positif tels que, A D0f2. Soit 0Dq l'anneau des entiers de

Q(]/Dq) et Oa l'anneau des entiers de conducteur /. Les idéaux primitifs de

b l/Âl
l'anneau Oa sont les Z-modules / a, tels que

(2.1) a > 0 - A

4 a
c e Z (a, b, c) 1

b + l/A
c'est-à-dire I — a[l, cp] où cp est déterminé modulo 1 et vérifie (2.1).

2 a
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Nous dirons que l'idéal / et le nombre (p sont associés.

Soit a un nombre non nul de Q(]/Do). Nous désignerons par ä le

conjugué x - y]/DQ de a x + y]/Do où x, y sont des nombres rationnels.

La proposition suivante permet de définir le discriminant de a.

Proposition 1. Soit a un nombre non nul de QQ/Do). Il existe des

b + f]/Do
entiers f > 0, a > 0, b tels que a où a et b vérifient (2.1)

2 a

avec À f2D0. Les nombres f, a et b sont déterminés par a.

Définition. Le nombre À /2D0 est le discriminant de a.

Pour prouver la proposition 1, nous nous appuierons sur le lemme suivant:

n x + y]/D~o X + Y]/Dq
Lemme 1. Soient a avec (x, y, z) 1

z Z
et z,Z> 0. Alors il existe un entier h > 0 tel que X hx, Y hy,
Z hz.

Démonstration. Posons x d'x\ z d'z' d"z'\ y d"y" avec

(x\ z') «= (y", z") — (df, d") 1, et d'et d" > 0. Alors on voit qu'il existe
k > 0 tel que z' kd", z" kd' d'où z kd'd".

D'autre part on a xZ zX et yZ zY d'où x'Z kd"X et j"Z kd' Y.
Comme (x7, kd") (y", kd') 1 on voit qu'il existe des entiers X' et Y" tels
que X x'X' et Y y" Y", d'où résulte Z kd"X' kd'Y". Comme
(d\ d") 1 on voit qu'il existe h tel que X' hd\ Y" hd" ce qui donne
X — hd'x', F hd"y", Z hkd'd", ce qu'il fallait prouver.

Démonstration de la proposition 1

D après le lemme 1 les entiers 2 a, f et Z? sont à chercher parmi les
nombres hz, hy et hx, et il suffit de montrer qu'il existe un et un seul
entier h > 0 tel que

P)ç^y 2 x2
(2-2) h c e Z,(hz,2 2c) 2

2z

D0y2 - x2 r
osons — - avec s > 0 et (r, s) 1. Les solutions de la premièrezz s

égalité (2.2) sont h ks et alors c kr, où, d'après la seconde égalité (2.2),
k est déterminé par {ksz, 2ksy, 2kr) 2. Si un nombre premier p divisait sz,
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sy et r, il diviserait y, z et D$y2 - x2, donc a, y et z, ce qui n'est pas possible.
Donc si sz est pair, la valeur de k qui convient est 1 et, si sz est impair, la
valeur de k qui convient est k 2. Ceci achève de prouver la proposition 1.

De la proposition 1 résulte immédiatement le résultat suivant

Corollaire 1. Les nombres associés aux idéaux primitifs de l'anneau
Oa sont les nombres de discriminant À.

Deux idéaux I a[ 1, (p] et J b[\, \j/] sont dits équivalents au sens strict
s'il existe p e QQ/Dq) tel que N(p) >0 et J pl. D'après [7], Proposition

3, c'est le cas si, et seulement si, il existe p,q,r,se Z tels que

pcp + q
ps - qr 1 et \j/ On dit alors que cp et \j/ sont strictement

équivalents. L'équivalence stricte implique l'équivalence usuelle, et l'on sait

qu'un idéal J b[\, \j/] équivalent à un idéal I a[\, cp] primitif de Oa est

un idéal primitif de Oa ([7], Corollary 3); ceci montre que le discriminant
d'un nombre est conservé par équivalence.

L'ensemble des classes d'équivalence d'idéaux pour l'équivalence stricte

contenant des idéaux primitifs forme un groupe fini CA pour la multiplication

induite par la multiplication des idéaux, isomorphe au groupe des classes

de formes quadratiques binaires primitives de discriminant À pour la

composition.
Passons maintenant à la réduction. Un nombre (p de discriminant À est dit

réduit si

L'idéal I a[ 1, (p] est dit réduit (respectivement négativement réduit) si l'on
peut choisir (p modulo 1 de manière à vérifier (2.3) (respectivement 2.4). Alors

on voit que

Proposition 2. Tout idéal réduit est négativement réduit.

Démonstration. Soit / a [1, (p] où cp vérifie (2.3). Alors / a[ 1, (p + 1]

où (p + 1 vérifie (2.4).
Plus généralement on a

rcp + 6"

(2.3)

négativement réduit si

(2.4)

- 1 < (p < 0 1 < cp

0 < cp < 1 < cp

Lemme 2. L'idéal 7=a[l,cp] est réduit si9 et seulement si,

cp + [ - cp] > 1, négativement réduit si, et seulement si, cp + [- cp] > 0.
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Démonstration. Il suffit de remarquer que, pour tout nombre réel (p non
entier on a -l<(p + [-(p]<OetO<(p + [-(p] + l<l.

Tout idéal primitif réduit (respectivement négativement réduit) / de Oa

s'écrit de manière unique I a[l,cp] où cp est un nombre réduit
(respectivement négativement réduit) de ß(]/So) de discriminant À. Nous dirons

que l'idéal I et le nombre (p sont associés.

Il est bien connu que le nombre des idéaux réduits primitifs de Oa est fini.
La proposition suivante montre qu'il en est de même pour les idéaux

négativement réduits.

Proposition 3. L'ensemble des nombres négativement réduits de
discriminant A donné est un ensemble fini. Le nombre des idéaux négativement
réduits primitifs de Oa est fini.

Démonstration. Pour montrer les deux assertions de la Proposition 3, il
suffit de montrer que le nombre des solutions {b, at c) de

_> b — ]/Ä b + |/Â
(2.5) 0 < < 1 < — b2 A + 4ac

2 a la
est fini. Comme (2.5) implique

(2.6) 0 < b - ]/A < 2a,]/Â

nous posons 2a b - a,2c b- a'; alors A + 4 entraîne

(2.7) A + aa' a + a')
D'après (2.6) on a b>]/Â > | a |, | a' |. De plus a a' A (mod 2),
donc a + a' 0 (mod 2), et a + a' ^ 2.

Si aa' 0 alors A est pair et (2.7) montre que As 0 (mod 2b) donc H-2
Si aa' > 0 alors A < A + aa' b(a+ a') < 2A. Donc a et a' > 0.

Si a a ' 1 alors b ; sinon a + a ' ^ 4 donc —
2 2

'

Si aa < 0 alors 0 < A + aa' — b{a+ a') < A, donc <! —
2

'

Ainsi )/Â < b—si A est pair, ]/Â < ^ si A est impair, ce

qui prouve que le nombre des b, et par suite celui des triplets (b, c, a), satisfaisant
à (2.5) est fini. Ceci termine la démonstration de la proposition 3.

Considérons maintenant le processus de réduction négative.
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bo + j/A
Soit (po (a0 > 0) un nombre de discriminant À. Supposons cp„

2a0

défini; nous définissons cp„ +1 par

(2.8) Qn [<Pn + 1] <P* Qn ~
<Pw+ 1

On voit que cp„ + j est strictement équivalent à cp„ et que (p„ > 1 et qn ^ 2 pour
1. De plus on a

1

cpo — Qo

Q\
Q2 ~

(2.9)

Qn
<P/i + 1

Inversement cp0 étant donné la condition (p„ > 1 (n ^ 1) et (2.9) définissent les

qt de manière unique.
Si (pw est négativement réduit alors 0 < (p„ < 1 donc, comme qn ^ 2, on a

0 < (p„ + i < 1 ce qui montre que $n+\ est négativement réduit.
bn + ]/Â

Au nombre cp„
2an

In @n[ 1
> tyn ]

(an > 0) est associé l'idéal In tel que

bn + ]/Â

et tous les idéaux In sont strictement équivalents entre eux.
Comme (Proposition 3) le nombre des nombres négativement réduits de

discriminant À est fini on voit, comme dans la théorie des idéaux réduits, que
les nombres cp négativement réduits de discriminant À, ainsi que les idéaux /
associés se répartissent en un nombre fini de périodes.

Définissons maintenant deux suites d'entiers An et Bn (n ^ - 2) par

(2.10)
A_2 0 A-1 T" 1 An qnAn — \ An-i
B-2 — 1 B-i 0 Bn qnBn- j — Bn_2 •

On vérifie par récurrence sur n les relations suivantes

Bn- 2<P0 — An-2 An - \ tyn ~ An- 2

(2.11) <p„
B,2 — i (po — An-\

<Po

<pw - Bn_
(n> 0)
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(2.12) AnBn.x-An-iBn=-1 (n>- 1)

(2.13) (pi • • • (p„ - 5„_i(p„ - 5„-2 i (O 1) >

(2.14) ß„ > ß„_ i + 1 ^ 1 d'où ^ n + 1 (« ^ 0)

- 1

(2.15) An - (p <,B„=Bn Q« + 1 Bn - 1

Définissons le nombre 0„ par

(2.16) Ö« Qi ...<p* •

Nous pouvons maintenant montrer, avec les notations qui précèdent, la

Proposition 4. Pour n assez grand le nombre q„ et l'idéal In

sont négativement réduits. Le nombre 0„ tend vers + oo quand n tend

vers + oo.

Démonstration. Soit q>o ~~~—avec ßo > 0. Nous avons
2a0

(Pj —-— >1 et (Pi — donc 0 < <pi < cpi.
qo — cpo Qo — Qo + (cpo — Qo)

Remplaçant q0 par cpi si nécessaire nous pouvons supposer 0 < (p0 < <Po -

De (2.11) et (2.12) on déduit

<P» - P«
Qo ~ Qo 1

(Bn-\tyn - Bn-2) (Bn-ityn ~ Bn-2)
*

Supposons Q„ > 1. D'après (2.14) on a Bn_{g)n - Bn_2 > l et Bn_i

^ Bn_2 + 1, donc

(pÄ - 1 1 ^1^1(Po - Qo < < ^ -
£„_iQ„ - Bn_ i + 1 1 Bn_{ n

Bn- î H

Qfl - 1

ce qui n'est pas possible pour n assez grand donc il existe n0 tel que, à partir
de n0, (p„ est négativement réduit.

Pour montrer que 0„ -> + oo quand n -> + oo, il suffit de remarquer que
Q/ > 1 pour i ^ 1 et que (p, ne prend qu'un nombre fini de valeurs pour
/ ^ n0. Ceci achève de prouver la Proposition 4.

L'étape suivante consiste à montrer que deux nombres strictement
équivalents négativement réduits sont dans la même période négative. Nous
adaptons le raisonnement classique (voir par exemple [3] §10-6, 10-10, 10-11
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ou [11] §29) à notre objet en nous référant à [11], Satz 5.2, qui dit que chaque
nombre réel a un développement en fraction continue négative bien déterminé.
Nous commençons par le

P\\f - Q
Lemme 3. Si cpo avec PS - QR - 1, R > S > 0, et

R\\f - S

\1/ > 1 alors il existe n tel que xp q>„.

Démonstration. Nous appliquons le processus (2.8), (2.9) au nombre

P
rationnel — <pj. Dans ce cas (2.8) s'écrit successivement

R

P
P q'0R - n (po — Qo

R

P- + 1

R
0 < ri < R

g
R - r2 « CPÎ — q[ [cpj + 1] ^ 2 0 ^ r2 < rx

n

1 Qnrn rn + 1 > (p ^ Qn ~ l^n '^A] ^ 2 0^rn+i</"„,
A"*

ï"N- \ — Q.Nrn ~ rn+\ * § N ~ — Q. N > Q N ~ + 1] ^ 2 /> + i — 0

Le fait qu'il existe N" tel que />+1 0 vient de ce que la suite des entiers

positifs o est strictement décroissante. Tenant compte de (2.11) et (2.10) il
vient

P
_

AN-\q'N — Am-2
_

AN

R Bn- \QN ~ BN-2 Bn

puis, comme (P, R) (AN,BN) 1, R et BN > 0 on voit que P ANf
R BN d'où - 1 PS - RQ PBm-\ - RAm-i* donc P{S-BN-1)

R(Q-An^).
Comme (P, R) 1, i? divise S — Bn~i, ce qui n'est possible que si

S car 0 < S < i? et 0 ^ < BN R. Donc on a:

"r •

BN\\f — Bm~ i
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Ceci s'écrit

1

<Po Qq ~
1

q[
Qi -

î

î
q'n--

v

c'est-à-dire (2.9) pour TV n où qt est remplacé par q\ et cp^+i par \j/. En

développant \\f en fraction continue négative on trouve le développement de

cp0 en fraction continue négative ([11], Satz 5.2), donc q\ qt et \p (p^+i,
ce qui démontre le lemme 3.

Proposition 5. Deux nombres négativement réduits strictement
équivalents sont dans la même période.

û(p - b
Démonstration. Supposons \j/ avec a, b, c, d entiers tels que

ccp — d
ad - bc — 1, où nous pouvons supposer ccp - d > 0 en changeant, si

nécessaire, les signes de a, b, c et d. Développons cp cp0 en fraction continue
négative et remplaçons; il vient

E'cPrt - Q
V — avec R cAn_1 - dßn_l9S cAn_2 ~ dBn_2

R<Vn - S

D'après (2.13) et (2.15) on SLÄn_{ <pBn^i — An_2 cpBn_2 —
G/î - 1 6/7 _ 2

d'où

R5„_i(c(p - d) - -L- S 5„_2(c(p - —
0/1-1 Ô/Î-2

Comme Bnl ^ n., ^ n - 1, Bn_x^ Bn-2 + 1 et que et
0« — 2 + 00 quand n + oo, on voit que pour n assez grand R > S > 0 ce

qui, d'après le Lemme 3, montre que (p„ est dans la période de \p et prouve
la Proposition 5.

Il
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§3. L'HOMOMORPHISME 0 ET L'APPLICATION \|/

Soit CA le groupe des classes d'idéaux au sens usuel de l'anneau Oa

L'homomorphisme 0 de CDfi sur CD défini et étudié dans [7], §3 est en fait
un homomorphisme des groupes des classes d'idéaux au sens strict, de C^fl
sur Cq. On vérifie que le Theorem 1 et le Corollary 4 de [7] soient vrais si

l'on remplace classe par classe au sens strict et équivalence par équivalence au

sens strict: pour adapter la démonstration du Théorème 1 il suffit de ne

considérer que des substitutions linéaires de déterminant + 1 (pages 333-334),

et pour celle du Corollary 4 il suffit de remarquer que, avec les notations
de [7], page 335,

b —- - + 1 Dsf > 0
\ 2 a \ 2c

A partir de maintenant nous considérons le cas où D 1 (mod 4) et f — 2.

Lemme 4. Un idéal primitif de Oad s'écrit I - [a, b + ]/D] avec
b 1 (mod 2), et soit a 1 (mod 2), soit a 0 (mod 4). Si C est la

classe au sens strict de I, la classe 0(C) contient l'idéal 0(7) où 0(7)
est défini par

(3.1) eoo -

b + \/D
ay

2

a b + j/77

4' 2

si a 1 (mod 2)

si a 0 (mod 4)

Démonstration. Soit 7= [a, b' + ]/D] un idéal primitif de 04D. On a

donc D b'2 - ac. Si b' est pair alors a est impair, donc
7 [a, b' + a + ]/D], donc on peut toujours supposer 7 [a, b + ]/D]
avec b impair. Alors ac 0 (mod 4) et, comme (<a, 2b, c) 1, on voit que:
soit ö=1 (mod 2), c 0 (mod 4), soit a 0 (mod 4), c 1 (mod 2).

Le fait que 0(7) e 0(C) est une conséquence immédiate de [7] Theorem 1

et Corollary 4.

Nous supposerons toujours b 1 (mod 2) dans l'écriture I [a, b + ]/D]
b + ]/D\

d'un idéal primitif de 04D et nous poserons 7 a[1, cp] avec cp

a

où (p est défini modulo 1.
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Soit 7 associé à (p un idéal de Oa (À D ou AD). Nous noterons /' et cp'

l'idéal et le nombre associés obtenus à partir de / et (p par une étape de

1

réduction négative, c'est-à-dire cp' Nous avons
[cp + 1] - cp

Proposition 6. Soit I a[1, cp] un idéal primitif négativement réduit
de Oad. Si a 1 (mod 2) et si 0(7) n'est pas négativement réduit alors
(0(7))' estf négativement réduit. Si a 0 (mod 4), 0(7) est négativement
réduit. ^

Démonstration. D'après le Lemme 2 on a (p + [-cp] > 0. Si

(p"
a 1 (mod 2), 0(7) a

- cp

1,- est négativement réduit si, et seulement

• ®
SI, h

2

tanément

(3.2)

> 0. Si 0(7) n'est pas négativement réduit on a simul-

d'où, comme [- cp] >2

(3.3)

cp + [-cp]>0, cp + 2

<P

~ (P

< 0

on voit que [- cp] =2 |-^— + 1 et

1<-Q
2 2

~(P

2

Des inégalités (3.2) on déduit aussi

-cp

< 1

~(p
2

(3.4) + i
2

avec 0 <
(P

+ 1

!<*<-
2 2

?<!.
2 2

- (P
d'où

Pour vérifier que 0(7)' est négativement réduit il suffit de voir que

1

(P

+ 1
<P

2

- 1

-cp'
__

<P

2 2

> 0

ce qui résulte de (3.3) et (3.4).

Si a s 0 (mod 4), 0(7) -[1, 2cp] est négativement réduit, car 2cp + [- 2cp]

^ 2cp + 2[~ cp] > 0. Ceci achève de prouver la proposition 6.
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Soit maintenant 7s l'ensemble des idéaux négativement réduits de Oad.
Nous considérons la partition suivante de E en trois sous-ensembles

Ei, E2, 7s3 Soit I a[1, (p] un idéal primitif de 04D, négativement réduit.
Alors

I e Ex si a 1 (mod 2) et 0(7) est négativement réduit,

I e E2 si a 1 (mod 2) et 0(7) n'est pas négativement réduit,

7 e 7s3 si a 0 (mod 4)

Soit 7s* l'ensemble des idéaux négativement réduits de Od. Nous définissons

une application \j/ de E dans E* de la manière suivante:

y (7) 0 (7), si 7 e 7si, ou 7e73,
y (7) (0(7))', si le 7s2,

de sorte que \|/(7) e 0(C), où C désigne la classe de 7.

Les propositions suivantes ne sont vraies que si D 5 (mod 8).
Ce qui distingue ce cas est que, si D 5 (mod 8), pour tout idéal

b +]/Dl
J a, on a a c 1 (mod 2).

Proposition 7. Si D 5 (mod 8) la restriction de y à Ts 3 est

surjective. L'image réciproque d'un idéal J e E* a deux éléments si J est

réduit, un seul si J n'est que négativement réduit.

Démonstration. Soit J a[ 1, co] un élément de C*. On peut supposer
0 < œ < 1 < co. Les idéaux de y-1 (7) appartenant à 7s3 sont à chercher

co + /cl
où k e Z, c'est-à-dire parmi les idéauxparmi les idéaux 4 a

co

1,-

Ii 4 a 1,- et L 4# 1,-
co + 1

Les idéaux Ix et I2 sont primitifs

et 72 est négativement réduit alors que 72 l'est si, et seulement si, co > 2 ce qui
signifie que J est réduit.

Proposition 8. Si D 5 (mod 8) les restrictions de y à E{ et à

7s2 sont des bijections de E{ (i 1, 2) sur 7s*.

Démonstration. Soit yi la restriction de y à 7si, et soit J a[1, co] e E*.
Onaco + [-co]>0, donc 7 a[l, 2co] est négativement réduit et, comme

a 1 (mod 2), on a 0(7) J et I e Ex, ce qui montre que y! est

surjective. Soit 71 fli[l,(pi] un idéal de E\ tel que yi(70 7; alors
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Ô(/i) ax 'T J, d'où ai a et <pi 2co (mod 2), ce qui montre que

7j / et que ijq est injective.

Considérons maintenant la restriction \j/2 de \|/ à E2. Soit J un idéal de is*

et co le nombre négativement réduit associé à J. Les idéaux /_ donnant J par

une étape de réduction négative sont définis par les nombres in eZ).
co + n

_ 2
Comme est un nombre de discriminant 4D, les idéaux \i/2_1(-0 sont,

-2
co + n

parmi les idéaux définis par les nombres
co + n

tivement réduits sans que /_ le soit, ce qui se traduit par

{ne Z), ceux qui sont néga-

- 1

+
1

co + n
< 0 +

co + n

d'après le lemme 2, c'est-à-dire

1

(3.5)
"

_
co + n

co + n co + n
> 0

< <
co -h n co + n

Tenant compte de ce que 0 < cö < 1 < co, on vérifie que n 1 est la seule

valeur de n qui satisfait (3.5), ce qui montre que \j/2 est bijective et achève de

prouver la proposition 8.

Des propositions 7 et 8 résulte immédiatement le résultat suivant:

Théorème 2. Soit D 5 (mod 8) un discriminant > 0. Soit 7V_

le nombre des idéaux primitifs négativement réduits de 04Di et soient N*
et N* respectivement le nombre des idéaux primitifs négativement réduits
et réduits de Od. Alors

(3.6) N_ 3 TV* + N*

L'application \j/ étant compatible avec l'homomorphisme 0 le résultat plus
précis suivant est vrai.

Théorème 3. Soit D 5 (mod 8) un discriminant > 0. Soit C*
une classe d'idéaux au sens strict de Od et G-^C*) son image inverse
par 6. Soit L_ le nombre des idéaux primitifs négativement réduits
de 0-1(C*) et soient L* et L* le nombre des idéaux primitifs
respectivement négativement réduits et réduits de C*. Alors:

(3.7) L_ 3L* + L*
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Nous pouvons maintenant prouver le Théorème 1. On sait que

{3,
si (1.1) n'a pas de solution impaire,

1, si (1.1) a des solutions impaires.

Ce résultat était déjà connu de Gauss ([2], §256, VI); d'autres démonstrations

se trouvent dans [8], §151 et [5], page 172.

Le Théorème 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorèmes 2 et 3 quand
D 1 (mod 8) seront exposés dans un article ultérieur.

§4. Exemples numériques

a) Théorème 2.

Nous donnons les valeurs de AL N* et N* pour tous les D s= 5 (mod 8)

de 5 à 109, et pour 141 et 165 que nous étudierons en b).

D AL N*_ N*

5 4 1 1

13 10 3 1

21 14 4 2

29 16 5 1

37 24 7 3

45 20 6 2

53 22 7 1

61 36 11 3

69 34 10 4

77 26 8 2

85 46 14 4

93 38 12 2

101 36 11 3

109 58 17 7

141 58 18 4

165 60 18 6
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b) Théorèmes 1 et 3.

Nous noterons H+(A) le nombre des classes d'idéaux au sens strict de

l'anneau Oa

Pour chacun des deux exemples le tableau correspondant donne successivement

pour chaque classe C de C/D un idéal négativement réduit, le nombre
/_ des idéaux négativement réduits de C, un idéal négativement réduit de

0(C) et enfin les nombres /* et /* des idéaux négativement réduits et réduits
de 0(C).

bl) D 141. C'est le plus petit D 5 (mod 8) tel que h + (D) > 1 et tel

que (1.1) n'a pas de solution impaire. On a h + (141) 2 et h + (4 x 141) 6.

C /_

[1, 12 + ]/l4Î] 2

[4, 13 + 1/141] 6

[7, 13 + 1/141] 6

[5, 14 + j/l4Î] 8

[11, 14 + 1/Ï4Î] 8

[20, 29 + 1/Ï4Ï] 28

1,-

0(C)

13 + l/Ï4T

l* l*

5,
19 + 1/141

14

Le Théorème 3 affirme que 2 + 6 + 6 3x4 + 2 et 8 + 8 +28 3x14 + 2,
ce qui est vrai.

Le Théorème 1 affirme que 2^3x4 + 2, 6 é 3 x 4 + 2, 8^3x14 + 2,
28 + 3 x 14 + 2, ce qui est vrai.

b2) D 165. C'est le plus petit D5 (mod 8) tel que 4 et tel
que (1.1) a des solutions impaires. On a 165) h +(4 x 165) 4.

C

[1, 13 + 1/165]

[3, 15 + 1/165]

[7, 16 + 1/165]

[11,22 + 1/165]

14

34

1,

3,

7,

6(C)

13 + 1/165

/*

1

15 + 1/165

23 + 1/165

33 + 1/Î65
1 1 - 11
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Les Théorèmes 1 et 3 affirment que 4 3x1 + 1, 8 3x2 + 2,
14 3x4 + 2 et 34 3x11 + 1, ce qui est exact.

D'autres exemples du Théorème 1 se trouvent dans [9].

Les auteurs remercient le rapporteur pour ses indications judicieuses qui
leur ont permis de parfaire leur texte.
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