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L’Enseignement Mathématique, t. 39 (1993), p. 195-210

IDEAUX NEGATIVEMENT REDUITS D’UN CORPS
QUADRATIQUE REEL ET UN PROBLEME D’EISENSTEIN

par Pierre KAPLAN et Philip A. LEONARD

§1. INTRODUCTION

Le probléme d’Eisenstein [1] dont il sera question ici est la détermination
des entiers positifs D = 5 (mod 8) tels que 1’équation

(1.1) X?2—-DY?>=4
a des solutions impaires. Si 1’équation
(1.2) T - DU?*= -4

a des solutions entiéres, les longueurs /, et /; des périodes des dévelop-
pements en fraction continue de /D et (1 + /D) /2 respectivement sont des
nombres impairs et I’on sait ([6]) que, alors, (1.1) a des solutions impaires si,
et seulement si,

(1.3) [y =15 (mod 4) .

Récemment Y. Mimura ([9]) a eu I’idée treés intéressante et originale
d’introduire le développement négatif en fraction continue de nombres
irrationnels quadratiques réels et les périodes de ceux qui sont négativement

réduits pour montrer que [’équation (1.1) a des solutions impaires si, et
seulement si,

ES

[
(14) 10— = 315(— + 7:‘

ou /o- et /;- sont les longueurs des périodes négatives de /D et (1 + /D) /2
respectivement, et k = 1 ou 2 suivant que (1.2) a, ou non, des solutions.

En fait, la condition (1.3) avait été généralisée et pouvait étre remplacée
([4]) par

(1.5) [ = [* (mod 4)
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ou / est 1a longueur de la période d’une classe ambige de discriminant 4D et
[* celle de son image par I’homomorphisme 6 du groupe des classes de
discriminant 4D sur le groupe des classes de discriminant D défini dans [7].
La définition de 8 est rappelée ci-dessous (Lemme 4).

Le but de ce travail est de montrer comment la méthode de [7], c’est-a-dire
I’utilisation des idéaux des anneaux Op et O,p, permet de généraliser la
condition (1.4) de maniére analogue a (1.5), et ceci tout en mettant bien en
¢vidence I’intérét du développement négatif en fraction continue introduit par
Mimura [9]. Nous prouvons le résultat suivant:

THEOREME 1. Soit D un nombre positif, congru a 5 modulo 8. Soit C
une classe d’idéaux au sens strict de ’ordre O,p et 0(C) son image par
I’homomorphisme 9. Soit |_ (respectivement [*) le nombre des idéaux
primitifs négativement réduits de C (respectivement de 0(C)) et I* le
nombre des idéaux primitifs réduits de 0(C). Alors I’équation (1.1) a des
solutions impaires si, et seulement si,

(1.6) [ =30" +1*.

Dans la section suivante (§2) nous allons rappeler ou définir les notions
intervenant dans I’énoncé du Théoréme 1 et exposer la théorie des idéaux
négativement réduits et de leurs périodes, pour laquelle il ne semble pas exister
de référence accessible.

Dans la troisiéme section nous prouvons le Théoréme 1 aprés avoir prouvé
deux résultats (Théorémes 2 et 3) permettant de relier les nombres des idéaux
primitifs négativement réduits de O4p et Op avec le nombre des idéaux
primitifs réduits de Op.

Nous terminons en donnant des exemples numériques (§4).

§2. CLASSES D’IDEAUX AU SENS STRICT ET REDUCTION NEGATIVE

Soit A > 0 un discriminant. Il existe un discriminant fondamental D, et
un entier f positif tels que A = Dy f?. Soit Op, ’anneau des entiers de
Q(/D,) et O, ’anneau des entiers de conducteur f. Les idéaux primitifs de

b+ /A
I’anneau O, sont les Z-modules [/ = {a, ——| tels que
b — A
(2.1) a>0, ——=ceZ, (abc)=1,
4a
b+ VA
c’est-a-dire I = a[l, ¢] ou ¢ = —— est déterminé modulo 1 et vérifie (2.1).

2a




CORPS QUADRATIQUE REEL 197

Nous dirons que ’idéal I et le nombre ¢ sont associés.

Soit o un nombre non nul de Q(/D,). Nous désignerons par a le
conjugué x — y}/D, de a = x + y1/D, ou x, y sont des nombres rationnels.
La proposition suivante permet de définir le discriminant de a.

PROPOSITION 1. Soit o un nombre non nul de Q(]/Eo). 1! existe des
b+ f1/Dy
2a
avec A = f?D,. Les nombres f, a et b sont déterminés par «q.

entiers f>0,a>0,b ftelsque o = ou a et b vérifient (2.1)

DEFINITION. Le nombre A = f2D, est le discriminant de «.

Pour prouver la proposition 1, nous nous appuierons sur le lemme suivant:

x+y/Dy X+ Y|/D
LEMME 1. Soient o = IV = ~ 0 , avec (x,y,2) =1

Z
et z,Z>0. Alors il existe un entier h >0 tel que X = hx, Y = hy,

Z = hz.

Démonstration. Posons x=d’'x’, z=d'z’=d"z"”, y=d"y"” avec
x,z2)=0",2")=({d',d"”") =1,etd et d”’ > 0. Alors on voit qu’il existe
k>0tel que 2’ = kd"”, 2" = kd' ol z = kd'd” .

D’autre partonaxZ = zXet yZ = zYdoux'Z = kd"'Xet y"'Z = kd'Y.
Comme (x’, kd”") = (¥, kd’) = 1 on voit qu’il existe des entiers X’ et Y tels
que X =x'X"et Y=y"Y", d’ou résulte Z = kd”" X' = kd'Y". Comme
(d’,d"”) =1 on voit qu’il existe & tel que X' = hd’, Y = hd"’ ce qui donne
X =hd'x", Y="nd"y", Z=hkd'd"”, ce qu’il fallait prouver.

Démonstration de la proposition 1

D’apreés le lemme 1 les entiers 2a, f et b sont & chercher parmi les
nombres Az, hy et hx, et il suffit de montrer qu’il existe un et un seul
entier A > 0 tel que

D y2 _ xZ
(2.2) h—"— " —ceZ, (hz2hy,20)=2.
2z
Do_y2 — x? r
Posons —T =-avecs >0 et (r,5) = 1. Les solutions de la premiére
s

egalité (2.2) sont h = ks et alors ¢ = kr, ou, d’apres la seconde égalité (2.2),
k est déterminé par (ksz, 2ksy, 2kr) = 2. Si un nombre premier p divisait sz,
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sy et r, il diviserait y, z et Doy? — x2, donc x, y et z, ce qui n’est pas possible.

Donc si sz est pair, la valeur de k£ qui convient est 1 et, si sz est impair, la

valeur de k qui convient est kK = 2. Ceci achéve de prouver la proposition 1.
De la proposition 1 résulte immédiatement le résultat suivant

COROLLAIRE 1. Les nombres associés aux idéaux primitifs de [’anneau
O, sont les nombres de discriminant A.

Deux idéaux I = a1, ¢] et J = b[1, y] sont dits équivalents au sens strict
s’1l existe p € Q(/Dy) tel que N(p) >0 et J= pl. D’aprés [7], Propo-
sition 3, c’est le cas si, et seulement si, il existe p, g,r,s € Z tels que

ps—qr=1 et y =w. On dit alors que ¢ et y sont strictement
re + s

¢quivalents. L’équivalence stricte implique 1’équivalence usuelle, et I’on sait

qu’un idéal J = b[1, y] équivalent a un idéal I = a[l, ¢] primitif de O4 est

un idéal primitif de O, ([7], Corollary 3); ceci montre que le discriminant

d’un nombre est conservé par équivalence.

L’ensemble des classes d’équivalence d’idéaux pour I’équivalence stricte
contenant des idéaux primitifs forme un groupe fini C, pour la multiplica-
tion induite par la multiplication des idéaux, isomorphe au groupe des classes
de formes quadratiques binaires primitives de discriminant A pour la
composition.

Passons maintenant a la réduction. Un nombre ¢ de discriminant A est dit
réduit si

(2.3) —l<oep<0, 1<o,
négativement réduit si
(2.4) O<op<l<o.

L’idéal I = a[l, @] est dit réduit (respectivement négativement réduit) si 1’on
peut choisir ¢ modulo 1 de maniére a vérifier (2.3) (respectivement 2.4). Alors
on voit que

PROPOSITION 2. Tout idéal réduit est négativement réduit.

Démonstration. Soit I = a[l, ¢] ou ¢ vérifie (2.3). Alors I = a[l, ¢ + 1]
ou ¢ + 1 veérifie (2.4).
Plus généralement on a

LEMME 2. L’idéal I = all,p] est réduit si, et seulement si,
o + [— @] > 1, négativement réduit si, et seulement si, ¢ + [— ¢] > 0.
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Démonstration. 11 suffit de remarquer que, pour tout nombre réel ¢ non
entierona —1<@o+[-0¢]<0et0O<o+[-0] +1<1.

Tout idéal primitif réduit (respectivement négativement réduit) 7 de O,
s’écrit de maniere unique I = a[l, ] ou @ est un nombre réduit (respec-
tivement négativement réduit) de Q(}/D,) de discriminant A. Nous dirons
que ’idéal I et le nombre ¢ sont associés.

I1 est bien connu que le nombre des idéaux réduits primitifs de O, est fini.
La proposition suivante montre qu’il en est de méme pour les idéaux
négativement réduits.

PROPOSITION 3. L’ensemble des nombres négativement réduits de discri-
minant A donné est un ensemble fini. Le nombre des idéaux négativement
réduits primitifs de O, est fini.

Démonstration. Pour montrer les deux assertions de la Proposition 3, il
suffit de montrer que le nombre des solutions (b, g, ¢) de

b—-VA b+ VA
<_L‘<1<l

(2.5) 0 , b?= A+ 4ac
2a 2a

est fini. Comme (2.5) implique

(2.6) 0<b-}VA<2a, 2c<b+]A

nous posons 2a = b — a, 2¢c = b — a’; alors b2 = A + 4ac entraine
2.7) A+oaa" =b(a+a’).

D’apres (2.6) on a b > /A >|a|, |a’|. Deplus o =o' =b = A (mod 2),
donc a + o’ =0 (mod 2), et a + o’ > 2.

Siao’ = 0 alors A est pair et (2.7) montre que A= 0 (mod 25b) donc b <

A
2

Si aa’” >0 alors A<A+ao"=b(o+a’)<2A. Donc o et o> 0.
A+1

) , A
;stnon o + a” > 4 donec b < — .
2

Sia=a’"=1 alors b =

Siaa’"<Oalors 0 <A+ oaa’=b(0+0a’) <A, doncb<é.
2

A+1

. A .
Ainsi /A < b < > si A est pair, /A < b < si A est impair, ce

qui prouve que le nombre des b, et par suite celui des triplets (b, ¢, a), satisfai-
sant & (2.5) est fini. Ceci termine la démonstration de la proposition 3.
Considérons maintenant le processus de réduction négative.
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bo + /A

Qo
défini; nous définissons ¢, ., ; par

Soit ¢q = (ag > 0) un nombre de discriminant A. Supposons ¢,

1
On+1 .

(2.8) gn =0, +1], ©,=¢g,—

On voit que ¢, ,; est strictement équivalent a ¢, et que ¢, > 1 et g, = 2 pour
n>1. De plus on a

©®o = qo —

(2.9

dn —
On+1

Inversement @, étant donné la condition ¢, > 1 (n > 1) et (2.9) définissent les
g; de maniere unique.

Si ¢, est négativement réduit alors 0 < ¢, < 1 donc, comme g, > 2, on a
0 < @,+1 <1 ce qui montre que ¢, est négativement réduit.
b, + /A

2a

n

Au nombre ¢, = (a, > 0) est associé I’idéal I, tel que

I, = a,[1, 0,] = [%M] ;
2
et tous les idéaux I, sont strictement équivalents entre eux.

Comme (Proposition 3) le nombre des nombres négativement réduits de
discriminant A est fini on voit, comme dans la théorie des idéaux réduits, que
les nombres ¢ négativement réduits de discriminant A, ainsi que les idéaux /
associés se répartissent en un nombre fini de périodes.

Définissons maintenant deux suites d’entiers A, et B,(n > — 2) par

A_,=0, A =+1, A, =q,A,_,—A,_2,
(2.10) 2 1= 4n 1 2
B_2= -1 5 B_]'-:O, BHZQan—l*Bn—Z-
On vérifie par récurrence sur n les relations suivantes
B, _ —A,_ An_ 10, — A,_
@11) g, =22 g LD 2, (20,

Bn-—l(pO_An—l Bn—l(pn_'Bn—Z ’
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WV
|

(212) Aan—l - An—an = —1 ’ (n

(2.13) @O " Qn=By 10— B2, @21,

(2.14) B,>B, ,+1>1, douB,2n+1, (n20),
—1

By@ns1 — Bu1

(2.15) Ap — @By =

Définissons le nombre 0, par

(2.16) 0,=¢1...0, .

Nous pouvons maintenant montrer, avec les notations qui précedent, la

PROPOSITION 4. Pour n assez grand le nombre ¢, et l'idéal I,
sont négativement réduits. Le nombre 6, tend vers + o quand n tend
vers + .

bo + VA

2ao

1 _ 1 _

>1 e ¢, = ——, donc O0<@;<®.
go — Qo Go — ®o + (Po — Vo) )

Remplacant @, par @, si nécessaire nous pouvons supposer 0 < @ < @o.

De (2.11) et (2.12) on déduit

Démonstration. Soit @ = avec ay,> 0. Nous avons

0 =

(p (T) _ (pn_(bn
0o~ Yo — _
(Bn—l(pn - Bn—2) (Bn—lq)n - Bn—2)

Supposons @, > 1. D’aprés (2.14) on a B,_ ¢, — B,_,>1 et B,_;
> B,_,+ 1, donc

0, — 1 1 1 1

= < £ =

Bn—l(pn_Bn—l+1 B + 1 Bn—l n
" O, — 1

ce qui n’est pas possible pour n assez grand donc il existe n, tel que, a partir
de ny, ¢, est négativement réduit.

Pour montrer que 8, &> + o quand n = + oo, il suffit de remarquer que
@; > 1 pour i > 1 et que ¢; ne prend qu’un nombre fini de valeurs pour
i > ny. Ceci achéve de prouver la Proposition 4.

L’étape suivante consiste a montrer que deux nombres strictement
équivalents négativement réduits sont dans la méme période négative. Nous
adaptons le raisonnement classique (voir par exemple [3] §10-6, 10-10, 10-11

Po— Qo <
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ou [11] §29) a notre objet en nous référant a [11], Satz 5.2, qui dit que chaque
nombre réel a un développement en fraction continue négative bien déterminé.
Nous commengons par le

LEMME 3. Si wozﬁ avec PS— QR = -1, R>S5>0, et
w.._

v > 1 alors il existe n tel que y = @,.

Démonstration. Nous appliquons le processus (2.8), (2.9) au nombre

. P
rationnel E = @,. Dans ce cas (2.8) s’écrit successivement

P
P=gqR —r, P0=7> o= E+1 , 0<nrn <R,
14 R ¥ . 7
R—QIrl ry, (plz—-— qlz[(pl+1]>29 O<r2<rls
r
’ Foy
Faet = duTn = Tneis @r=—""", gi=lp,+ 1122, 0< rpi<r,,
'y
V4 7 rN_l 7 7 7
IN-1=QqnNIn — Ths1s Oy = =gy, dn=1l0n+11 22, rv;1 =0.
Irn

Le fait qu’il existe N tel que ry,.; = 0 vient de ce que la suite des entiers
positifs r; est strictement décroissante. Tenant compte de (2.11) et (2.10) il
vient

P Ay_1qy— An-» A

R Bn-1gy — Bn_> BN,

puis, comme (P, R) = (Ay,By) =1, R et By> 0 on voit que P = Ay,
R=By dou —-1=PS—-RQ=PBy_1— RAN_,, donc P(S— By_1)
= R(Q —An-1)-

Comme (P,R) =1, R divise S — By_1, ce qui n’est possible que si
S=By_;car0<S<RetO0<By_1<By=R.Donc on a:

Ayy — An_1

®Po = .
Byy — By_;
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Ceci s’écrit

c’est-a-dire (2.9) pour N = n ou g; est remplacé par g; ef Oy Par y. En
développant y en fraction continue négative on trouve le développement de
¢ en fraction continue négative ([11], Satz 5.2), donc g/ = g; et ¥ = QOn+1,
ce qui démontre le lemme 3.

PROPOSITION 5. Deux nombres négativement réduits strictement
équivalents sont dans la méme période.

ap — b .
Démonstration. Supposons Yy = @ y avec a, b, ¢, d entiers tels que
cQ —
ad — bc = — 1, ou nous pouvons supposer c¢ — d > 0 en changeant, si

nécessaire, les signes de a, b, c et d. Développons ¢ = @, en fraction continue
négative et remplacons; il vient

-Pwn“é?
Yy =———avecR=cA,.,—-dB,_,S=cA,_, —dB,_, .
Rop, — S
1
D’apres (2.13) et 2.15) ona A,_; = ¢B,_; — s An_2 = @B,_, — 5 ,
n—1 n—-2

d’ou

R =B, (co—d) —

» 8= B,_2(co —d) -

n—1 en—z

Comme B,_,>n, B, ,>n-1, B,_,>B,_,+1 et que 06,_; et
0,2 = + o quand n = + o, on voit que pour z assez grand R > S > 0 ce

qui, d’aprés le Lemme 3, montre que @, est dans la période de v et prouve
la Proposition 5.
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§3. L’HOMOMORPHISME 6 ET L’APPLICATION \

Soit C, le groupe des classes d’idéaux au sens usuel de ’anneau O,.
L’homomorphisme 6 de Cps2 sur Cp défini et étudié dans [7], §3 est en fait
un homomorphisme des groupes des classes d’idéaux au sens strict, de C}) 12
sur C;. On vérifie que le Theorem 1 et le Corollary 4 de [7] soient vrais si
I’on remplace classe par classe au sens strict et équivalence par équivalence au
sens strict: pour adapter la démonstration du Théoréme 1 il suffit de ne
considérer que des substitutions linéaires de déterminant + 1 (pages 333-334),
et pour celle du Corollary 4 il suffit de remarquer que, avec les notations
de [7], page 335,

b —
V[ ()

A partir de maintenant nous considérons le cas ou D =1 (mod 4) et f = 2.

LEMME 4. Un idéal primitif de O,p s’écrit I = [a, b+ /D] avec
b=1(mod?2), etsoit a=1(mod?2), soit a=0(@mod4). Si C estla
classe au sens strict de I, la classe 0(C) contient ’idéal 6(I) ou 6(I)
est défini par

(1 b+ /DT
a, zlﬁ , sSia=1 (mod 2),
(3.1) 0(l) =
‘a b+ /D]
f,—L/_ . sia=0 (mod 4),
L 14 2

Démonstration. Soit I = [a, b’ + 1/1_)] un idéal primitif de O4sp. On a
donc D=b'?—~ac. Si b’ est pair alors a est impair, donc
I=1[a,b +a+)/D], donc on peut toujours supposer I = [a, b + /D]
avec b impair. Alors ac = 0 (mod 4) et, comme (a, 2b, ¢) = 1, on voit que:
soit @ = 1 (mod 2), ¢ = 0 (mod 4), soit @ = 0 (mod 4), ¢ =1 (mod 2).

Le fait que 6(/) € 6(C) est une conséquence immédiate de [7] Theorem 1
et Corollary 4.

Nous supposerons toujours b = 1 (mod 2) dans ’écriture I = [a, b + /D]

b + 1D

a

d’un idéal primitif de O,p et nous poserons I = a[l, ¢] avec ¢ =

ou ¢ est défini modulo 1.
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’

Soit 7 associé a ¢ un idéal de O, (A = D ou 4D). Nous noterons I’ et ¢
I’idéal et le nombre associés obtenus a partir de I et ¢ par une étape de

1
réduction négative, c’est-a-dire ¢’ = . Nous avons
[ +1] -0

PROPOSITION 6. Soit I = all, ¢] un idéal primitif négativement réduit
de O,p. Si a=1(mod?2) etsi O0() n’est pas négativement réduit alors
(6(1))" est négativement réduit. Si a = 0 (mod 4), 0(I) est négativement
réduit.

Démonstration. D’aprés le Lemme 2 on a ¢ +[—¢]>0. Si

a=1 (mod 2), 0(0) = a[l,%] est négativement réduit si, et seulement

si, %+ _T(p > 0. Si 6(J) n’est pas négativement réduit on a simul-
tanément
_ ~ ¢

3.2) O+ [-0]>0, o+2 —-2—]<0
- _ -0 : _ — ¢
d’ou, comme [— @] > 2 [—2——] , on voit que [— @] =2 [—-2— + 1 et

. -
(3.3) . A Bk

2 2

o s . - 1 — @
Des inégalités (3.2) on déduit aussi — [——9 — — o, 9< B d’ou
2 2 2 2
(3.4) LA =—[19]mmo< L
2 2 2 2 2

Pour vérifier que (/)" est négativement réduit il suffit de voir que

e

ce qui résulte de (3.3) et (3.4).

1
>0

L
2

| -1

, a
Si a = 0 (mod 4), (1) = Z[l’ 2¢] est négativement réduit, car 2¢ + [— 2¢]
220 + 2[~ @] > 0. Ceci achéve de prouver la proposition 6.
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Soit maintenant E ’ensemble des idéaux négativement réduits de O,p.
Nous considérons la partition suivante de E en trois sous-ensembles
E,, E,, E;. Soit I = a[l, @] un idéal primitif de O,p, négativement réduit.
Alors

IeE, si a=1(@mod2) e 6) estnégativement réduit,

IeE, si a=1(@mod2) e 6({) n’estpas négativement réduit,
ITeE; si a=0 (mod4).

Soit E* ’ensemble des idéaux négativement réduits de Op. Nous définissons
une application y de E dans E* de la maniére suivante:

v() =0(), silIeE, oulek;,,
v() = (6)", silek,,

de sorte que y (/) € 6(C), ou C désigne la classe de I.
Les propositions suivantes ne sont vraies que si D =35 (mod 8).
Ce qui distingue ce cas est que, si D=5 (mod 8), pour tout idéal

b+ /D

J = |a, onaa=c=1 (mod 2).

PROPOSITION 7. Si D =35 (mod 8) la restriction de v a FE; est
surjective. L’image réciproque d’un idéal J € E* a deux éléments si J est
réduit, un seul si J n’est que négativement réduit.

Démonstration. Soit J = a[l, ®] un élément de E*. On peut supposer
0<mw<1<wm. Les idéaux de y~!(J) appartenant a E; sont a chercher
o+ Kk

parmi les idéaux 4a[1, ou k e Z, c’est-a-dire parmi les idéaux

o+ 1

® .
I, = 4a[1,5] et I, = 4a[1, . Les idéaux I; et I, sont primitifs

et I, est négativement réduit alors que 7; ’est si, et seulement si, ® > 2 ce qui
signifie que J est réduit.

PROPOSITION 8. Si D = 5 (mod 8) les restrictionsde v a E, eta
E, sont des bijections de E; (i=1,2) sur E*.

Démonstration. Soit y; la restriction de y a E;, et soit J = a[l,w] € E*.
Onaw+ [—w] >0, donc I =all,2w] est négativement réduit et, comme
a=1 (mod 2), on a 6(/)=J et I e E;, ce qui montre que y; est
surjective. Soit I, = a;[1, ¢,] un idéal de E, tel que y;(l;) = J; alors
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0() = a [1,E =J d’ot g, =aet 9, =20 (mod 2), ce qui montre que
2

I, = I et que y; est injective.

Considérons maintenant la restriction v, de v a E,. Soit J un idéal de E*
et o le nombre négativement réduit associé a J. Les idéaux J_ donnant J par

une étape de réduction négative sont définis par les nombres (neZ).

@+ n

est un nombre de discriminant 4D, les idéaux vy, Y(J) sont,

Comme
W+ n

parmi les idéaux définis par les nombres (neZ), ceux qui sont néga-

o+ n
tivement réduits sans que J_ le soit, ce qui se traduit par

-1 -2 2
+ | = <0, + |- >0
W+ n o+ n O+ n W+ n
d’aprés le lemme 2, ¢’est-a-dire
1 2 2
(3.5) 2 |- < < |-
W+ n W+ n W+ n

Tenant compte de ce que 0 < ® < 1 < w, on vérifie que n = 1 est la seule
valeur de »n qui satisfait (3.5), ce qui montre que y, est bijective et achéve de
prouver la proposition 8.

Des propositions 7 et 8 résulte immédiatement le résultat suivant:

THEOREME 2. Soit D =5 (mod 8) un discriminant > 0. Soit N_
le nombre des idéaux primitifs négativement réduits de O,p, et soient N*

et N* respectivement le nombre des idéaux primitifs négativement réduits
et réduits de Op. Alors

(3.6) N_ =3N* + N* .

L’application y étant compatible avec I’homomorphisme 8 le résultat plus
précis suivant est vrai.

THEOREME 3. Soit D =5 (mod 8) wun discriminant > 0. Soit C*
une classe d’idéaux au sens strict de Op et 0-1(C*) son image inverse
par 6. -Soit L_ le nombre des idéaux primitifs négativement réduits
de O-1(C*) et soient L* et L* le nombre des idéaux primitifs respec-
tivement négativement réduits et réduits de C*. Alors.

(3.7) L_=3L*%+4+L*,
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Nous pouvons maintenant prouver le Théoréeme 1. On sait que

3, si  (1.1) n’a pas de solution impaire,
(3.8) Card(Ker9) = . _ ‘ .
1, si  (1.1) a des solutions impaires.

Ce résultat était déja connu de Gauss ([2], §256, VI); d’autres démons-
trations se trouvent dans [8], §151 et [5], page 172.
Le Théoréme 1 est une conséquence immédiate de (3.7) et (3.8).

Remarque. Les résultats analogues aux Théorémes 2 et 3 quand
D =1 (mod 8) seront exposés dans un article ultérieur.

§4. EXEMPLES NUMERIQUES

a) THEOREME 2.

Nous donnons les valeurs de N_, N* et N* pour tous les D = 5 (mod 8)
de 5 a 109, et pour 141 et 165 que nous étudierons en b).

D N_ N* N*
5 4 1 1
13 10 3 1
21 14 4 2
29 16 5 1
37 24 7 3
45 20 6 2
53 22 7 1
61 36 11 3
69 34 10 4
77 26 8 2
85 46 14 4
93 38 12 2
101 36 11 3
109 58 17 7
141 58 18 4
165 60 18 6
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b) THEOREMES 1 ET 3.

Nous noterons H* (A) le nombre des classes d’idéaux au sens strict de
I’anneau O, .

Pour chacun des deux exemples le tableau correspondant donne successi-
vement pour chaque classe C de C,,, un idéal négativement réduit, le nombre
[ des idéaux négativement réduits de C, un idéal négativement réduit de
0(C) et enfin les nombres /* et /™ des idéaux négativement réduits et réduits
de 8(C).

bl) D = 141. C’est le plus petit D = 5 (mod 8) tel que 2+ (D) > 1 et tel
que (1.1) n’a pas de solution impaire. On a A+ (141) = 2 et A+ (4 x 141) = 6.

C /_ 8(C) * [*
[1,12 + |/141] 2
o 13 + /141
[4, 13 + /141] 6 1,~——2— 4 2
[7,13 + 1/141] 6
[5, 14 + 1/141] 8
p— 19 + /141
[11, 14 + |/141] 8 5, — 5 14 2
[20, 29 + |/141] 28

LeThéoréme3affirmeque2+6+6=3><4+Zet8+8+28:3><14+2,
ce qui est vrai.

Le Théoreme 1 affirme que 2 # 3 x 4 + 2, 6#3X4+2, 83 x 14+ 2,
28 #3 X 14 + 2, ce qui est vrai.

b2) D = 165. C’est le plus petit D = 5 (mod 8) tel que 2+ (D) > 4 et tel
que (1.1) a des solutions impaires. On a A+ (165) = h* (4 x 165) = 4.

C l_ 0(C) * [*

[1,13 + |/165] 4 1, 13+ V16 1 1
2]

[3, 15 + |/165] 8 3, 13 + V165 2 2
2]

[7, 16 + |/165] 14 7, 23 + V1657 4 2
2
- r 1/165]

[11,22 + }/165] 34 11,u 11 1
2]




210 P. KAPLAN ET P. A. LEONARD

Les Théoremes 1 et 3 affirment que 4=3x1+1, 8=3Xx2+2,
14=3%x4+2et34=3x11+1, ce qui est exact.

D’autres exemples du Théoréme 1 se trouvent dans [9].

Les auteurs remercient le rapporteur pour ses indications judicieuses qui
leur ont permis de parfaire leur texte.
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