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PONCELET’S THEOREM AND DUAL BILLIARDS

by Serge TABACHNIKOV

While in captivity as a prisoner of war in the Russian city of Saratov, from
winter 1812-13 till June 1814, Jean-Victor Poncelet discovered his celebrated
closure theorem. Its statement is as follows. Given two nested ellipses Iy, I’
in the plane, one plays the game illustrated in figure 1: choose a point x on
Iy, draw a tangent line to I'y from X, find its intersection y with I'; and
iterate, taking y as a new starting point. The claim is that, if x returns back
to the initial position after a finite number of iterations, then every point of
I'; will return back after the same number of iterations.

The prehistory of Poncelet’s theorem is related to works of many
mathematicians (Euler and Steiner among them). The original proof, given by
Poncelet, was synthetic and rather complicated. Jacobi soon recognized a
relation between Poncelet’s theorem and the theory of elliptic functions, and
published his analytic proof in 1828. In 1853 Cayley gave explicit conditions
for Poncelet polygons to be closed. A modern conceptual proof of the theorem
and its generalization to 3-space were found by Griffith and Harris some
15 years ago. We refer to [B.-K.-O.-R.] and [B], chap. 16.6 for the history of
Poncelet’s theorem and its classical proofs; and to [G.-H. 1, 2] for the modern
one.

Fig.1 Fig.2
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Here we give still another proof of Poncelet’s theorem. Given two nested
ellipses 'y, I'., we define an area form in the annulus 4 between them (so
that the total area of A is infinite), and an area-preserving map 7 of A into
itself. This map is integrable in the sense that A is foliated by T-invariant
curves I, . A standard argument shows then that each I'; carries an affine
structure and 7, restricted to I';, is a shift # — ¢ + c. It follows that, if 7 has
an N-periodic orbit on I, then all its orbits are N-periodic.

To define the area form and the map 7T identify the interior of I',, with the
hyperbolic plane (the Klein-Beltrami model). The distance between points is
given by dist(x, y) = | log[x, y, b, a] |, where [ ] denotes the cross-ratio — see
figure 2. The area form is the hyperbolic area, and the map 7 is the dual
billiard transformation with respect to I'y, defined as follows (see [M], [T1, 2]
for more information on this map). Given a point x outside of Iy, draw a
tangent line to I'y through x (say, the right one from the view-point of x)
and reflect x in the point of tangency W — see figure 3. Thus,
dist (x, W) = dist(W, Tx), where the distances are those in the hyperbolic
metric.

We need two properties of the dual billiard map.

PROPOSITION 1. For any convex smooth curve 1, (not necessarily an
ellipse) the map T preserves hyperbolic area.

Two conics I'y and I', determine a pencil of conics I';, passing through
the four intersection points I'y N ', (imaginary in our case). The curves I,
foliate the annulus A.

PROPOSITION 2. The map T preserves each ellipse of the pencil in A.

We will prove the propositions a little later; now we deduce Poncelet’s
theorem from them.

Tx

Fig.3 Fig.4
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Recall that an affine structure on a curve is an atlas on it such that changes
of charts are local affine transformations of the real line. Recall also that given
a plane domain with an area form ®, a smooth function f in the domain has
the symplectic gradient v associated to it (it is also called the Hamiltonian
vector field with the Hamiltonian function f). In local coordinates (p, g) such

of 0 of O
that ® = dpadg, one hasvy = — — — + — — .
dg dp Op dq

Given two initial ellipses I'y, Iy, include them into a pencil and take I's
to be an ellipse from this pencil outside of I';. Consider the dual billiard map
in the annulus A4 between I, and I'... Then A is foliated by invariant curves,
and T is one of them. Define an affine structure on I';. Let f be a smooth
function in a neighbourhood of I';, which is constant on each curve I'y. Its
symplectic gradient v is tangent to I';. If one replaces f by another func-
tion g = ¢(f), then the corresponding vector field on I’} becomes
u= ¢ (f(@))v. Hence a vector field is defined on I'; up to a multiplication
by a constant. Fix v requiring that its time-one map is the identity.
Let f mod 1 be the coordinate on I';, such that v = 8/0¢. The parameter 7 is
defined up to a shift £ = ¢ + a and it determines an affine structure on I';.
Since T preserves the area form and the foliation I';, leaf-wise, it is an affine
transformation on I';. Its degree is one, hence it is a shift r— ¢ + c.
Poncelet’s theorem follows.

The above argument is a particular case of a more general well-known
consideration. Given a Lagrangian foliation .¥ on a symplectic manifold
(M, w), its leaves carry a canonical affine structure. This structure is defined
on a leaf F' by a locally free action of the additive group of the cotangent space
T#M/%), where M/% is the (locally defined) space of leaves of the
foliation. Namely, functions on M/%, considered as Hamiltonians on M,
define there commuting vector fields which are tangent to the leaves of .%. A
function with zero differential at F e M/% defines the zero field on F. If in
addition a symplectic map is given, preserving .# leaf-wise, then its restriction
to each leaf is an affine transformation therein. If, moreover, the leaves are
tori, then the restriction of the map to each leaf is a shift (Arnold-Liouville
theorem; see, e.g. [A.-G.]).

Now we prove the two propositions.

LEMMA 3. Given a smooth convex curve I in the hyperbolic plane, fix
a number ¢ >0 and consider the family of straight lines which cut off
segments of areas c¢ from T. Then the envelope of this family bisects each
segment of the family at the point of tangency (see figure 4).
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Proof (see [F.-T.] for the Euclidean case). Let AB be a line from the
family and O its tangency point to the envelope. Assume that AO > BO
— see figure 5. Let A;B; be a sufficiently close line from the family
and O = ABn A;B,. We have: Area(A0’A;) = Area(BO’'B;). Also
AO’ > BO" and A0’ > B, 0O’. Then the central symmetry in O’ sends the
““triangle’’ BO’B, inside AO’A,; a contradiction.

Proposition 1 follows: the shaded areas in figure 6 are equal.

Consider now a pencil of conics I'; and let / be a line in the plane.
Intersections of / with the conics I', define an involution on / — see figure 7.

LEMMA 4 (Desargues’ Theorem. [B], 14.2.8.3). This involution is a
projective transformation of the line |.

Proof. Applying a projective transformation of the plane, we make the
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conics T, concentric. Take the center as the origin of the plane V. Then the
pencil consists of conics.

I = {<A(), x> =1}

where A, = A + AE and A4, E: V — V* are selfadjoint operators. Let / be
tangent to I'; at x and u be the tangent vector there. Parametrize [ by a
real ¢ such that points of / are x + fu.

The intersection / N Ty is given by

<A+AE) x+tu), x+twu>=1.

Since < Ax, x> =1 and < Ax, u> = 0, we simplify to
<A+AE)u,u>t>+2MM<Ex,u> +A<Ex,x>=0.

It follows that 1 1 ) < Ex, u>

ty t) <Ex,x>

independently of A; here ¢, and ¢, are the roots. Hence the correspondence
t, © t, is fractional-linear, that is, projective.

Note, that the two fixed points of the involution are the tangency points
of / to conics of the pencil (one of them is an ellipse, another- a hyperbola).
There are exactly two such tangency points by the Jacobi theorem.

To deduce proposition 2, consider figure 8. The involution sends x to y
and U to V, preserving W. Since it preserves the cross-ratio, we have:
dist(x, W) = dist(W, ).

One can deduce a little more from these proofs. Consider three nested
ellipses from a pencil: I'"", I'" and I', and identify the interior of the outer one
with the hyperbolic plane. Let 7" and 7" be the dual billiard transformations
in the hyperbolic plane, associated to I'" and I'"".

U

Fig.8 Fig 9
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PROPOSITION 5. T'T"” = T" T’ (see figure 9).

Proof. For any point of the annulus between I'” and T there is an ellipse
from the pencil through it. Both maps preserve this ellipse and both are shifts
in the affine parameter on it. Since shifts commute, the proposition follows.

We refer to [T 3] for a partial converse statement to the proposition.

One can also slightly generalize Poncelet’s theorem (this generalization
was known to Poncelet too). Consider a number of ellipses from a pencil:
I T, T'" etc, and let I' contain all the others. Choose a point xeI', draw a
tangent line to I'’, find its intersection with I', draw a tangent line
to I'”" etc. Then, if x returns back after a number of iterations, any initial point
on I' does. It follows again from the fact that 7’, 7"’ etc. are shifts in the affine
parameter on I'.

We conclude with a conjecture. Let a smooth strictly convex curve I'y be
given in the plane. Assume that its outer neighbourhood is foliated by convex
curves I'y, A € [0, €[. Assume also that, for any line tangent to I'y, the (local)
involution, defined on it by its intersections with the curves I, is a
projective transformation. Then the curves I', belong to a pencil of ellipses.
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