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THE SUM OF THE CANTOR SET WITH ITSELF

by J.E. NYMANN

In a recent paper [2], Pavone gave an interesting geometric proof of the
fact C + C = [0, 2] where C denotes the Cantor ternary set. He also noted,
as a consequence of his proof, that for any k£ € [0, 2] there exists either a finite
or an uncountable number of pairs (x, y) € C X C for which x + y = k. In
the finite case, he also gives an unfortunately incorrect formula for the number
of such pairs.

In this note we give a very simple proof of the fact that C + C = [0, 2].
From this proof it is also easy to count the number of representations of
numbers in [0, 2] as a sum of two elements of C and obtain a correct formula
in the finite case. The proof given below that C + C = [0, 2] is not new. It
is, perhaps, the intended solution to an exercise in [1], and it is very similar
to a ‘““‘Quicky’’ proposed and solved by Shallit very recently in [3].

It is well known that C ={Y 2¢,/3":¢,=0or 1}. C+ C = [0,2] is
equivalent to %C + % C = [0, 1]. Also %C ={Ye,/3":¢,=0 or 1} and
hence

5C+3C={L(e.+¢,)/3"g,=00r 1 and &,=0or 1}
={Ya,/3":a,=0,1,2} = [0, 1]

and the proof that C + C = [0, 2] is complete.

Now we consider the number of representations of a number in (0, 2) as
a sum of two elements of C. Fix k = 24 in (0, 2) and let # = Y a,/3" be the
unique infinite ternary expansion of 4. Pavone claimed that: *“...the equation
X + y = k has a finite or an uncountable number S (k) of solutions in C X C
according to whether the cardinality c(k) of the set {n € N\{0};a, = 1} is
finite or infinite respectively. In fact the exact formula is S (k) =1ifc(k) =0
or 1, and S(k) = 3(2¢¥)~2) otherwise.”” The statement concerning when S (k)
is finite or uncountable is correct, but the formula for S (k), when finite, is

not correct. It is not difficult to obtain the correct formula for S(k), but
different cases must be considered.
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First consider the case where 4 has a unique ternary expansion, which is
necessarily infinite. Then S(k) = 2¢®, To see, this, set & = Y a,/3" where
a,=0,1,or2(n=1,2,3,..), a, # 0 for infinitely many n and a, # 2 for
infinitely many n. We wish to count the number of representations 2 = x + y
where x,y € % C;ie,x=Ye,/3",y= Ye//37and g,,&, = 0 or 1. Now
if a,=0, clearly ¢, =¢, =0. Also if a,=2, ¢, =¢, = 1. However if
a, =1, we can have g, =1 and €, = 0 or we can have g, =0 and ¢, = 1.
Hence there are 2¢() choices for (x, y) (uncountable if c(k) is infinite).

Next consider the case where 4 has two ternary expansions. Then they are
necessarily of the form

h = .alaz...a,22... = .alaz...a,_lb,

where a1, a, *-+,a,_1=0,1,2,a., =0o0r 1 and b, = a, + 1. Then using the
ideas in the last paragraph and keeping in mind there are two counts (one for
each representation of #4), we have:

3(2¢0)) if a=0.

S(k) =
) {3(2c<k>—1) if a=1.
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