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1 168 J. SHALLIT

For other results connecting discrepancy and the boundedness of the partial
quotients, see the papers of Niederreiter [218] and Dupain and Sos [94, 95].
Also see Beck and Chen [25] and Richert [258].

We can also consider the so-called L? discrepancy, T,, defined as follows:
let

S,(00,0,0)
n

Rn(t) =

and put

1 1/2
To(®) = (sORf,(t)dt) :

It is possible to generalize the definitions of D, and 7, to the multi-
dimensional case, though we omit the details. By appealing to numbers with
bounded partial quotients, Davenport [73] constructed sequences in two
dimensions with low L? discrepancy. Also see Proinov [250, 251, 252].

Another measure connected with sequences is called dispersion. Let
'© = (X1, X2, ...) and define the dispersion

d,(w) = sup min |x — x|,
xel0,1] 1€k<Kn
essentially half the distance between the most widely separated points of the
sequence X, Xz, ..., X,. (Compare with the function 64(n) in Section 11.)

Niederreiter [221] considered the dispersion of the sequence {n6}. He
showed that if 6 has bounded partial quotients, then d,(w) = O(1/n). He
also gave a more detailed estimate, showing that d,(w) is approximately
K(0)/4n. Also see Drobot [93] and Larcher [311].

13. CONNECTIONS WITH ERGODIC THEORY

Let O be irrational, o = (6,260, ...) and S,(/, ) be defined as in the
previous section. Veech [293] developed connections between S, and ergodic
theory. We mention one result that is number-theoretic in nature. Let
X, = S,(I, ® mod 2, and define

o1
po() = lim — Y x,

n—o0o N 1<kgn

N\
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if the limit exists. Then Veech showed that ue(J) exists for all I C [0, 1) if and
only if the partial quotients of 6 are bounded.

For other connections with ergodic theory, see the papers of Stewart [286];
del Junco [154]; Dani [70, 72]; and Baggett and Merrill [14, 15].

14. PSEUDO-RANDOM NUMBER GENERATION

Lehmer [183] introduced the linear congruential method for pseudo-
random number generation. Let X;, m, @, ¢ be given, and define

Xii1=aXy +c¢ (modm),

for k > 0. For this to be a good source of ‘“‘random’’ numbers, we want the
sequence X, to be uniformly distributed, as well as the sequence of pairs
(Xy, Xk+1), triples, etc.

A test for randomness called the serial test on pairs (X, X, 1) amounts
to the two-dimensional version of the discrepancy mentioned above in
Section 12. This turns out to be essentially the function p(g, 7)) defined in Sec-
tion 10. Thus linear congruential generators that pass the pairwise serial test
arise from rationals a/m having small partial quotients in their continued
fraction expansion. See the papers of Dieter [87, 88]; Niederreiter [219, 220,
222]; Knuth [170, Section 3.3.3]; and Borosh and Niederreiter [42].

15. FORMAL LANGUAGE THEORY

Let w = wow;w, - -+ be an infinite word over a finite alphabet. We say
that the finite word x = xox; * - - X, is a subword of w if there exists m > 0
such that w,,,.; = x;, for 0 < i < n. We say that w is k-th power free if x* is
never a subword of w, for all nonempty words x. Here is a classical example:
let s(n) denote the number of 1’s in the binary expansion of n. Then the infinite
word of Thue-Morse

t = totit, -+ = 0110100110010110 - - - ,

defined by ¢, = s(n) mod 2, is cube-free.

Another way to define infinite words is as the fixed point of a homo-
morphism on a finite alphabet. For example, the Thue-Morse word ¢ is a fixed
point of @, where ¢(0) = 01 and ¢(1) = 10.
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