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1166 J. SHALLIT

number. It follows from the results of KmosSek and Shallit cited above that
Z(22-1y < 2 for all kK > 0.

Borosh and Niederreiter [42] showed that Z(2%) < 3 for 6 < k < 35.

More recently, Niederreiter [223] proved that Zaremba’s conjecture holds
for all powers of 2; in fact, we have Z(2*%) < 3 for all kK > 0.

Larcher [182, Corollary 2] proved the existence of a constant ¢, such that
for every n > 1 there exists a positive integer j < n, relatively prime to n, such
that if

J/n = [03 a;, Ayy ..oy am] ’

then

Y a; < c(logn) (log log n)? .

1<i<m

This is close to the best possible bound O(logn), which was reportedly
conjectured by L. Moser (although I do not know a reference); the bound
‘would be a consequence of Zaremba’s conjecture.

For other results connected with Zaremba’s conjecture, see the papers of
Cusick [63, 66]; Niederreiter [224]; Sander [268]; and Hensley [315].

11. PROPERTIES OF THE SEQUENCE 10 (mod 1)

If 0 is a real number, by 6 (mod 1) we mean {6} = 6 — [0], the fractional
part of 0.

It has been known at least since Bernoulli [26] that properties of the
sequence 0, 260, 30, ... are intimately connected with the continued fraction
expansion for 0. The distribution of 76 (mod 1) is a vast subject, and we restrict
ourselves to mentioning several results connected with numbers of constant

type.
~ Let 0 be an irrational number, and let

O=ag<a1 << " <a,<a,+1=1
be the sequence of points {k0},1 < k < n, arranged in ascending order.

Define

8g(n) = max a — a;_;.
1<ig<n+1
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Then Graham and van Lint [119] proved the following theorem:

lim sup ndy(n) < o
if and only if 6 is a number of constant type.
Boyd and Steele [43] introduced the function [¥(6), the length of the
longest increasing subsequence of {6}, {26}, ..., {n8}. They proved that

]
lim inf = ©)

n—o l/ﬁ

>0

and

. 1, (0)
lim sup
n—ro W
if and only if the partial quotients of 6 are bounded.
For some other results on {18} connected with bounded partial quotients,

see Ennola [100, 101]; Lesca [185]; Drobot [92]; and Strauch [288].

< o

12. DISCREPANCY AND DISPERSION

Let = (x, X, X3, ...) be a sequence of real numbers. Let I C [0, 1) be an
interval and let | 7| denote its length. Define the counting function
S,(I) = S,(I, ®) as the number of terms x;, 1 < k < n, for which {x;} e L.

The discrepancy D, (x;, x,, ..., X,) is a measure of how much the sequence
X1, X2, ..., X, deviates from a uniform distribution. It is defined as follows:
S,(, )
D,(®) = Dy(X1, X2y ..y X)) = sup | — — |Il‘
Icio,1) n

Now consider the discrepancy of the sequence w = (8, 20, 30, ...). If 0 has
bounded partial quotients, then the discrepancy of w is small. In particular,
we have the following estimate: If K(0) < k, then

1 k
nD,(w) <3 + ( + logn
loga log(k+1)

1
for a = 5(1 +1/5). See, for example, Kuipers and Niederreiter [173].
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