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[0, 1,2,2,1,1,1,1,2, ....,02, 1, ..., 1, 2, ..., 2, ...]
and similar numbers are transcendental; see [16]. Previously, Maillet had given
similar examples, but not explicitly [201]. Other examples have been recently
given by Davison [79]. Also see Grant [120].

10. ““QUASI-MONTE-CARLO’’ METHODS AND ZAREMBA’S CONJECTURE

In this section we briefly discuss some integration methods that depend on
rational numbers with small partial quotients. There is a large literature on
this subject; the interested reader can start with the comprehensive survey of
Niederreiter [220].

(This section is tied to the main subject in the following manner: we wish
to construct explicitly rational numbers with small partial quotients. One way
to do this is to take an irrational number with bounded partial quotients and
employ the sequence of convergents.)

In s-dimensional ‘‘quasi-Monte Carlo’’ integration, we approximate the
integral

(2) j f®at
[0, 1]s

by the sum

1

- f(xk) ’

N 1<kgn
where Xx;, X,, ... 1s a set of points in [0, 1]°.

The goal of quasi-Monte Carlo integration is to choose the points

X;, X, ... SO as to minimize the error in the approximation.

In the method of good lattice points, we assume that the function f is
periodic of period 1 in each variable. We choose a large fixed integer m and
a special lattice point g € Z5. Then we approximate the integral (2) with the
sum

1 k
— fl—g]-
M 1<k<m m
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“«“Good”’ lattice points g make the error in this approximation relatively small.
Let h = (b, hy, ..., hs) and define
rt) = [] max(l, |kl .

1<igs

Also define

p(g, m) = minr(h) ,
h
where h ranges over all lattice points with

— < h; <
2 J

- m m
5
h+0, and h-g=0 (mod m). It can be shown that good lattice points
correspond to large values of p.
Now consider the 2-dimensional case, i.e. s = 2. Let g = (1,2 with
ged (g, m) = 1. Then Zaremba [306] showed that

K(g/m) + 2 < BLE, ) S K(g/m)
Hence good lattice points correspond to rationals g/m with small partial
quotients.

For other connections with numerical integration, see the papers of Haber
and Osgood [125] and Zaremba [307].

We now turn to Zaremba’s conjecture. Define

Z(n)= min K (—J—) .
1<j<n n
ged(j,n) =1
Then Zaremba [307] conjectured that Z(n) < 5.

Borosh [41] showed that Zaremba’s conjecture is true for 1 < n < 10000.
In this range, only two integers have Z(n) = 5, namely n = 54 and n = 150.
Twenty-five integers in this range have Z(n) = 4; the smallest is 6 and the
largest is 6234. A brief discussion of Zaremba’s conjecture up to 1978 can be
found in [220].

Borosh and Niederreiter [42] suggested that in fact Z(n) < 3 for all
sufficiently large n. The most extensive computation seems to be that of Knuth,
cited in [42], which verified that Z(n) < 3 for 10000 < n < 3200000.

Zaremba’s conjecture is true for certain infinite sequences. For example,
we certainly have Z(Fy) =1 for k> 1, where F) is the k-th Fibonacci
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number. It follows from the results of KmosSek and Shallit cited above that
Z(22-1y < 2 for all kK > 0.

Borosh and Niederreiter [42] showed that Z(2%) < 3 for 6 < k < 35.

More recently, Niederreiter [223] proved that Zaremba’s conjecture holds
for all powers of 2; in fact, we have Z(2*%) < 3 for all kK > 0.

Larcher [182, Corollary 2] proved the existence of a constant ¢, such that
for every n > 1 there exists a positive integer j < n, relatively prime to n, such
that if

J/n = [03 a;, Ayy ..oy am] ’

then

Y a; < c(logn) (log log n)? .

1<i<m

This is close to the best possible bound O(logn), which was reportedly
conjectured by L. Moser (although I do not know a reference); the bound
‘would be a consequence of Zaremba’s conjecture.

For other results connected with Zaremba’s conjecture, see the papers of
Cusick [63, 66]; Niederreiter [224]; Sander [268]; and Hensley [315].

11. PROPERTIES OF THE SEQUENCE 10 (mod 1)

If 0 is a real number, by 6 (mod 1) we mean {6} = 6 — [0], the fractional
part of 0.

It has been known at least since Bernoulli [26] that properties of the
sequence 0, 260, 30, ... are intimately connected with the continued fraction
expansion for 0. The distribution of 76 (mod 1) is a vast subject, and we restrict
ourselves to mentioning several results connected with numbers of constant

type.
~ Let 0 be an irrational number, and let

O=ag<a1 << " <a,<a,+1=1
be the sequence of points {k0},1 < k < n, arranged in ascending order.

Define

8g(n) = max a — a;_;.
1<ig<n+1
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