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REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS 159

They showed that if 6 has bounded partial quotients, then U,(6) = O(log n),
V,.(0) = O(n), and W,(0) = O(n?). See [134].
(Warning to the reader: in their papers, Hardy and Littlewood used the

1 :
notation {x} to mean x — [x] — E’ not x — [x], as is more standard today.)

For other related papers, see Hardy and Littlewood [129, 131]; the collected
works of Hardy [127]; Ostrowski [230]; Khintchine [161]; Oppenheim [228];
Chowla [53, 54]; Walfisz [298, 299, 300], and Schoissengeier [314].

Others researchers have examined similar sums in connection with numbers
with bounded partial quotients. See the papers of Faiziev [104] Ivanov [151],
and Schoissengeier [274].

6. FRACTAL GEOMETRY

Numbers with bounded partial quotients provided an early example of a -
set with non-integral Hausdorff dimension.

Let dim S denote the Hausdorff dimension of the set S (for a definition,
see, e.g. Falconer [103]). We use the definitions of € and %, from section 1.

In 1928, Jarnik [152] proved that dim & = 1,

1

and

<dm%, <1 -

_k10g2 8klogk’

for kK > 8. An exposition of Jarnik’s work can be found in Rogers [263].
In 1941, Good proved the following result [118]:

dim %, = lim oy ,,

n— oo

where o = oy, is the real root of the equation

E Q(alaa29"',an)_-20= 1
k

lsal,az,...,ang

and Q() denotes Euler’s continuant polynomial. (These are multivariate
polynomials, defined by Q() = 1, O(a;) = a,, and

Qay, az, ... an) = a,Q(ay, az, ..., ay_1) + O(ay, as, vees Ay _2)

for n > 2.)
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Good also obtained the estimate .5306 < dim %, < .5320. This was
improved by Bumby [48] in 1985 to .5312 < dim %, < .5314. More recently,
Hensley [140] showed that .53128049 < dim %, < .53128051. For other
results on the Hausdorff dimension of %, and related sets, see Jarnik [153];
Besicovitch [30]; Rogers [262]; Baker and Schmidt [21]; Hirst [147, 148];
Billingsley and Henningsen [32]; Cusick [63, 64, 65]; Pollington [245];
Kaufman [158]; Marion [202]; Gardner and Mauldin [115]; Rambharter [253,
254]; and Hensley [139, 141, 308, 309].

7. ScHMIDT’S GAME

W. M. Schmidt [270] introduced the following two-player game, called an
(o, B) game: let a, p be real numbers with 0 < a, B < 1. First Bob chooses a
closed interval on the real line, called B;. Then Alice chooses a closed
interval A; C B,, such that the length of A4, is a times the length of B,. Then
Bob chooses a closed interval B, C A, such that the length of B, is B times
the length of A;, and so on. If the intersection of all the intervals A, is a
number with bounded partial quotients, then Alice is declared the winner;
otherwise Bob is declared the winner.

Schmidt showed that if 0 < a < 1/2, then Alice always has a winning
strategy for this game. This is somewhat surprising, since as we have seen
above, the set Z of numbers with bounded partial quotients has Lebesgue
measure 0.

Using the theory of (o, B) games, Schmidt also reproved the result of Jarnik
that % has Hausdorff dimension 1.

Several papers have proved other results on (a, ) games: see Schmidt
[271]; Freiling [109, 110]; and Dani [70, 71, 72]. Also see Schmidt [272,
Chapter 3].

8. HALL’S THEOREM

If S and T are sets, then by S + 7 we mean the set
{s+t|seS,teT}.
Similarly, by S - T we mean the set
{st|seS,teT}.

If S is a set of Lebesgue measure zero, then it is quite possible for S + S
to have positive measure. For example, if C denotes the Cantor set (numbers




	6. Fractal Geometry

