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158 J. SHALLIT
5. CERTAIN SUMS IN DIOPHANTINE APPROXIMATION

Let us agree to write {0} for the fractional part of 0, namely, 6 — [0].

One of the earliest appearances of real numbers with bounded partial
quotients is in the theory of Diophantine approximation.

For example, consider the sum

MCEE) ({ke} - -1—) .
1<k<n 2
Clearly s,(8) = O(n); but Lerch proved in 1904 that if 6 has bounded partial
quotients, we have s,(0) = O(logn). See [184]. (This result was also
announced by Hardy and Littlewood in 1912; see [128].)
At the International Congress of Mathematicians in 1912, Hardy and
Littlewood [128] announced several theorems on Diophantine approximation,
some of which relate to the subject at hand. For example, they defined

Z (k ~ -2-) nif

1<k<n

5.(0) =

and stated that if © has bounded partial quotients, then s,(0) = O(}/n). The
proof appeared later; see [130].
At the same Congress, Hardy and Littlewood announced that

1\2 n
1<§<n ({ke} 2) 12 + oM,
for all irrational 6. This is incorrect, and the correct formulation was stated
in a 1922 paper: the result holds for many, but not all irrationals, and in
particular it holds for 6 with bounded partial quotients. See [132] for the
statement and [133] for a proof.

Hardy and Littlewood also examined other series of interest. They defined:

Uu,0 = Y __(_lpi
! 1 <Fen ksinkn®
(— D*
V,0) = ,
©) 1<2k:<n sin k7O
and
1
w0 = Y

| <ren (sin kmB)?

— T
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They showed that if 6 has bounded partial quotients, then U,(6) = O(log n),
V,.(0) = O(n), and W,(0) = O(n?). See [134].
(Warning to the reader: in their papers, Hardy and Littlewood used the

1 :
notation {x} to mean x — [x] — E’ not x — [x], as is more standard today.)

For other related papers, see Hardy and Littlewood [129, 131]; the collected
works of Hardy [127]; Ostrowski [230]; Khintchine [161]; Oppenheim [228];
Chowla [53, 54]; Walfisz [298, 299, 300], and Schoissengeier [314].

Others researchers have examined similar sums in connection with numbers
with bounded partial quotients. See the papers of Faiziev [104] Ivanov [151],
and Schoissengeier [274].

6. FRACTAL GEOMETRY

Numbers with bounded partial quotients provided an early example of a -
set with non-integral Hausdorff dimension.

Let dim S denote the Hausdorff dimension of the set S (for a definition,
see, e.g. Falconer [103]). We use the definitions of € and %, from section 1.

In 1928, Jarnik [152] proved that dim & = 1,

1

and

<dm%, <1 -

_k10g2 8klogk’

for kK > 8. An exposition of Jarnik’s work can be found in Rogers [263].
In 1941, Good proved the following result [118]:

dim %, = lim oy ,,

n— oo

where o = oy, is the real root of the equation

E Q(alaa29"',an)_-20= 1
k

lsal,az,...,ang

and Q() denotes Euler’s continuant polynomial. (These are multivariate
polynomials, defined by Q() = 1, O(a;) = a,, and

Qay, az, ... an) = a,Q(ay, az, ..., ay_1) + O(ay, as, vees Ay _2)

for n > 2.)
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