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L'Enseignement Mathématique, t. 38 (1992), p. 151-187

REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS:
A SURVEY

by Jeffrey Shallit

Abstract. Real numbers with bounded partial quotients in their continued
fraction expansion appear in many different fields of mathematics and

computer science: Diophantine approximation, fractal geometry, transcendental

number theory, ergodic theory, numerical analysis, pseudo-random
number generation, dynamical systems, and formal language theory. In this

paper we survey some of these applications.

1. Introduction and Definitions

If x is a real number, we can expand x as a simple continued fraction

1
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which we abbreviate in this paper as

x [a0, 01,02,03. •••] •

In this paper, we only discuss the case of regular continued fractions, where
ao is an integer and a,, is a positive integer for i f \ \ the expansion may or
may not terminate. (For an introduction to continued fractions, see Hardy and
Wright [135, Chap. 10]; for a more definitive work, see Perron [236]. For a
history of continued fractions, see Brezinski [44].)

Supported in part by NSF Grant CCS-8817400, a Walter Burke Award from Dartmouth
College and NSERC Canada.



152 J. SHALLIT

If x is rational, then its continued fraction expansion terminates, and we

can write x [a0, ax, a„]. If we agree that an 1 and n ^ 1, then this
expansion is unique and we define

K(x) max ak
l^k^n

the largest partial quotient in the continued fraction for x.
If x is irrational, then its continued fraction expansion does not terminate.

This expansion is unique. We write x [a0, au a2, ...] and define

K(x) sup ak
k^l

If K(x) < co, then we say that x has bounded partial quotients.
We define 0ßk {x e R | K{x) ^ k}, and 08 {x e R | K(x) < oo}.

Furthermore, let c&k ^ n (0, 1) and I7 ^ n (0, 1).

Real numbers with bounded partial quotients appear in many fields of
mathematics and computer science: Diophantine approximation, fractal

geometry, transcendental number theory, ergodic theory, numerical analysis,

pseudo-random number generation, dynamical systems, and formal language

theory. In this paper we survey some of these applications. Because of limited

space, we cannot include a discussion of every result in detail. However, we

have tried to include as complete a list of references as possible for those topics

directly related to the main subject. Readers who know of other references are

urged to contact the author (and provide a copy of the relevant paper, if
possible). It is hoped that the list of references may contain some surprises even

for experts in the field.
The author's interest in the subject arose from the material in Section 9.

Because of this, the viewpoint presented in this article may be somewhat

idiosyncratic.

2. Numbers of Constant Type

Let 0 be an irrational number, and let || 0 || denote the distance between

0 and the closest integer.
Let r ^ 1 be a real number. We say that 0 is of type < r ifqI<70 I ^ -

r

for all integers q ^ 0. Then we have the following
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Theorem 1. If 0 is of type < rs then AT(0) < r. If K(0) r,
then 0 is of type < r + 2.

For a proof, see Baker [20, p. 47] or Schmidt [272, p. 22].

If there exists an r < oo such that 0 is of type < r, then 0 is said to be of
constant type. By the theorem, numbers of constant type and numbers with
bounded partial quotients coincide, and we will use these terms
interchangeably in what follows.

A classical theorem of Lagrange states that the continued fraction for a
is ultimately periodic if and only if a is a real quadratic irrational, and so all
real quadratic irrationals are of constant type; see, for example, Lagrange
[178] or Hardy and Wright [135, Chapter 10]. We will not explicitly discuss

quadratic irrationals further in this paper.
Since

e [2, 1,2, 1, 1,4, 1, 1,6, 1, 1,8, 1, 1, 10, ...]

(see Cotes [58] and Euler [102]), we see that e is not of constant type. It is

also known that the numbers e2/n and tan 1/n (n an integer ^ 1) are not of
constant type. The status of n and y (Euler's constant) is presently unknown.
In section 9 we will see some explicit examples of transcendental numbers of
constant type.

One way to interpret Theorem 1 is to say that numbers with bounded partial
quotients are badly approximable by rationals; this term is also used frequently
in the literature.

Note that if 0 is of constant type, and r is a rational number, then r0 is
also of constant type [54]. In fact, it is not hard to prove the following: let
r a/b be a rational number, and suppose K($) n. Then
K(rd) ^ I ab | (n + 2), and K(Q + r) ^ b2(n + 2); see Cusick and Mendès
France [69].

From this, it follows that if a, b, c, d are integers with ad - be ^ 0, then

a0 + b

c0 + d
has bounded partial quotients iff 0 does. (See Shallit [278]. I would like to
thank J.C. Lagarias for bringing this to my attention.) One can also deduce
this result directly from the continued fraction, using results of Raney [256].
For another view of Raney's results, see van der Poorten [246].

Another related concept is the Lagrange-Markoff constant, denoted by
p(0). It is defined as follows:

jit (0) ~1 lim inf q || #0 ||

q —> oo
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Hurwitz [150] showed, among other things, that |i(0) ^ ]/5; furthermore,

p I—2^~~) *>erron s^owe(^ ^at ^

0 [aQ,aua2,...]

then

ix(0) lim sup([a/+1,a/ + 2,a/ + 3,...] + [0,a,,i,..., fli])
i-> co

From this it follows that p(0) < oo if and only if 0 is of constant type.
The range of p(0), as 0 takes on all irrational values, is known as the

Lagrange spectrum and has been extensively studied. We direct the reader to
the work of Lagrange [178, pp. 26-27]; Markoff [203, 204]; Heawood [138];
Perron [235] ; Vinogradov, Delone, and Fuks [295] ; Freiman [111] ; Kinney and

Pitcher [166]; Berstein [29]; Davis and Kinney [78]; Cusick [59, 62]; Flahive

[117] ; Cusick and Mendès France [69] ; Wilson [301] ; Dietz [89] ; Pavone [232] ;

Prasad [249]; and especially the books of Koksma [172] and Cusick and

Flahive [67].
For more on approximation by rational numbers, see Cassels [52],

Schmidt [272], Kraaikamp and Liardet [313], Larcher [312].

3. The Metric Theory of Continued Fractions

Recall that denotes the set of real numbers in (0, 1) with bounded partial
quotients.

While it is easy to see ^ has uncountably many elements, nevertheless

4'most" numbers do not have bounded partial quotients. More precisely, we

have the following

Theorem 2 (Borel-Bernstein), f7 is a set of measure 0.

The theorem is due to Borel [38]. The original proof was not complete,

as discussed in Bernstein [27] ; further details were provided in a later paper

of Borel [39]. For other proofs, see Hardy and Wright [135, Thm. 196] or

Khintchine [160]. Also see Dyson [96].

Here is a sketch of a more general theorem: first, let us equate probability
with Lebesgue measure, and assume x is a real number in (0, 1). Then,

expanding x as a continued fraction, we have

X [0,flfi,fl2,fl3, •••]
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and we can consider each afx) to be a function of x. Then it is not

difficult to show that

Pr[a„(x) k]0 j

From this, it follows that

Pr[u„(x) ^ -(1)
If the random variables afx) were independent, it would follow from the

Borel-Cantelli lemma that

Pr [tfn(x) ^ bn infinitely often] 1

if and only if diverges. Unfortunately, the afx) are not independent," bn

but they are 44almost" independent; with some additional work, the result can
be shown.

Now taking, e.g., bn n, we see that for almost all x, we have a„(x) ^ n

infinitely often, and hence ^ is a set of measure 0.

Theorem 2 is a simple result in the metric theory of continued fractions,
which had its origins in an 1812 letter from Gauss to Laplace. Gauss essentially
stated [116] that

lim Pr[a„(x) k\ log2 1 + |

«-»oo y k(k 2) J

and this was proven by Kuzmin [174, 175] and Lévy [186], independently.
Actually, even more is known. For example, Khintchine [160, 162] proved

that if f{n) is a non-negative function that does not grow too quickly, then
with probability 1 we have

lim — E f(ak) X / log2 1 + — —)
m-> oo m 1 ^.k 1 \ /*(/* + 2) J

Now setting /(/) 1 if i n, and /(/) 0 otherwise, we see that with

probability 1, the fraction log2 | 1 + —1—| of the partial quotients in the
\ r(r+ 2)

continued fraction expansion of a real number x are equal to r.
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Some early papers discussing the distribution of partial quotients include
Gyldén [123, 124]; Brodén [45]; and Wiman [302].

For the classical metric theory of continued fractions, see (in addition to
the papers mentioned above) Lévy [187, 188, 189, 191]; Khintchine [162, 163];
and Denjoy [83, 84, 85]. For more recent improvements, see Szüsz [289, 290];
de Vroedt [296]; Wirsing [303]; Rieger [261]; Babenko [12]; and Babenko and
Jur'ev [13].

A more modern approach derives these results using powerful methods of
ergodic theory. A good introduction is the book of Billingsley [31]. Other
articles include Knopp [168]; Doeblin [91]; Ryll-Nardzewski [266]; Hartman,
Marczewski, and Ryll-Nardzewski [137]; Hartman [136]; Lévy [190]; Rényi
[257]; de Vroedt [297]; Stackelberg [283]; Salât [267]; Philipp [239, 240, 241,

242, 243]; Philipp and Stackelberg [244]; and Galambos [112, 113, 114].

4. Continued Fractions for Algebraic Numbers

A major open problem is to determine if any algebraic numbers of degree

> 2 are in JL As Khintchine [164, 165, 160] has remarked,

It is interesting to note that we do not, at the present time, know the

continued-fraction expansion of a single algebraic number of degree higher
than 2. We do not know, for example, whether the sets of elements [partial
quotients] in such expansions are bounded or unbounded. In general, questions

connected with the continued-fraction expansion of algebraic
numbers of higher degree than the second are extremely difficult and have

hardly been studied.

(The problem goes back at least to 1949, with the appearance of
Khintchine's book [164]. The paragraph above most likely also appeared in
the first (1936) edition of Khintchine's book, but I have not been able to verify
this by examining a copy. I do not know any earlier explicit reference to the

problem. A remark similar to Khintchine's was made by Delone in a foreword
to a translation of Delone and Fadeev [82, p. iv].)

Khintchine's remark is still true today; there are only a few papers that have

explicitly discussed the partial quotients of algebraic numbers of degree > 2.

See, for example, Davenport1) [76]; Orevkov [229]; Pass [231]; Wolfskill
[304]; Blinov and Rabinovich [34]; Bombieri and van der Poorten [37];
Dzenskevich and Shapiro [98]; and van der Poorten [247].

*) Actually, Davenport's results apply to all irrational numbers, not just algebraic
numbers. Also see Mendès France [206].
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One can deduce weak upper bounds on the growth of the partial quotients

of algebraic numbers from results in Diophantine approximation. Suppose

there exist constants C, s such that

„ C
II > —

qs

for all positive integers q. Wolfskill [304] remarked that the partial quotients

at in the continued fraction expansion of 0 then satisfy at < A^s+&)1, where A

depends on C and 8. Thus upper bounds can be deduced from the results in

the following papers: Liouville [192]; Thue [291]; Siegel [280, 281]; Dyson

[97]; Roth [265]; Davenport and Roth [77]; Baker [18, 19]; Feldman [105];

Bombieri [35]; Bombieri and Mueller [36]; Chudnovsky [55]; Easton [99]; and

Baker and Stewart [22]. Stronger results were given by Davenport and Roth

[77]. They showed that the denominators qt of convergents to a real algebraic

number 0 satisfy

Cn
log log qn <

j/log Yl
'

here C is a constant that depends on 0 but not on n. Furthermore, this constant

can be made effective.
There are several methods known for computing the partial quotients for

a given algebraic number. See the papers of Lagrange [177]; Vincent [294];
Cantor, Galyean, and Zimmer [50]; Churchhouse [56]; Rosen and Shallit
[264]; Akritas and Ng [6, 7]; Thull [292]; and Akritas [1, 2, 3, 4, 5].

In 1769, Lagrange [177] showed that the real zero of x3 - 2x — 5 has a

continued fraction expansion which begins

[2, 10, 1, 1, 2, 1, 3, 1, 1, 12, ...]

For some other explicit computations of the continued fraction expansions of
algebraic numbers of degree > 2, see von Neumann and Tuckerman [217];
Richtmyer, Devaney, and Metropolis [260]; Bryuno [46]; Lang and Trotter
[181]; Richtmyer [259]; and Pethö [238]. In 1964, J. Brillhart found that the
real zero of x3 - Sx - 10 had some unusually large partial quotients. An
explanation was provided later by Churchhouse and Muir [57] and Stark [284].
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5. Certain Sums in Diophantine Approximation

Let us agree to write {0} for the fractional part of 0, namely, 0 — [0].
One of the earliest appearances of real numbers with bounded partial

quotients is in the theory of Diophantine approximation.
For example, consider the sum

^0)= E ({**}-M
l^k^n \ 2/

Clearly s^(0) 0(n); but Lerch proved in 1904 that if 0 has bounded partial
quotients, we have 5^(0) 0(\ogn). See [184]. (This result was also

announced by Hardy and Littlewood in 1912; see [128].)
At the International Congress of Mathematicians in 1912, Hardy and

Littlewood [128] announced several theorems on Diophantine approximation,
some of which relate to the subject at hand. For example, they defined

_
(£-i)27r/e

s„(0) E e
2

l^k^n

and stated that if 0 has bounded partial quotients, then 5^(0) O(]//?). The

proof appeared later; see [130].

At the same Congress, Hardy and Littlewood announced that

Z (Re}-i)2 T^ + 0(1)'
l^k^n \ 2/ 12

for all irrational 0. This is incorrect, and the correct formulation was stated

in a 1922 paper: the result holds for many, but not all irrationals, and in
particular it holds for 0 with bounded partial quotients. See [132] for the

statement and [133] for a proof.
Hardy and Littlewood also examined other series of interest. They defined:

«,»)- I T^r,K/U« ksmknv

(- l)k
E LiL,

i^k^n smA:7c0

and

WM E
1

(sin/:7C0)2
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They showed that if 0 has bounded partial quotients, then 6^(0) 0(\ogn)9
K„(0) 0(n), and Wn(Q) 0(n2). See [134].

(Warning to the reader: in their papers, Hardy and Littlewood used the

notation {x} to mean x - [x] —, not x — [x], as is more standard today.)
2

For other related papers, see Hardy and Littlewood [129, 131] ; the collected

works of Hardy [127]; Ostrowski [230]; Khintchine [161]; Oppenheim [228];
Chowla [53, 54]; Walfisz [298, 299, 300], and Schoissengeier [314].

Others researchers have examined similar sums in connection with numbers
with bounded partial quotients. See the papers of FaTziev [104] Ivanov [151],
and Schoissengeier [274].

6. Fractal Geometry

Numbers with bounded partial quotients provided an early example of a '

set with non-integral Hausdorff dimension.
Let dim S denote the Hausdorff dimension of the set S (for a definition,

see, e.g. Falconer [103]). We use the definitions of ^ and Wk from section 1.

In 1928, Jarnfk [152] proved that dim ^ 1,

- < dim ^2 < 1
>

4

and
4 1

1 - ——7 < dim %k < 1 —

k log 2 8k log k

for k > 8. An exposition of Jarnik's work can be found in Rogers [263].
In 1941, Good proved the following result [118]:

dim % lim oki„
n~* oo

where a akt„ is the real root of the equation

I Q(ai,a2,1

1 ^ûj,ûr2» ...,an^k

and Q( denotes Euler's continuant polynomial. (These are multivariate
polynomials, defined by Q(1, Q(a}) au and

Q(ai#2> ••• an) anQ(ßi,a2,a„_[) +

for n ^ 2.)
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Good also obtained the estimate .5306 < dim ^ < .5320. This was
improved by Bumby [48] in 1985 to .5312 ^ dim ^2 ^ .5314. More recently,
Hensley [140] showed that .53128049 < dim < .53128051. For other
results on the Hausdorff dimension of and related sets, see Jarnik [153];
Besicovitch [30]; Rogers [262]; Baker and Schmidt [21]; Hirst [147, 148];
Billingsley and Henningsen [32]; Cusick [63, 64, 65]; Pollington [245];
Kaufman [158]; Marion [202]; Gardner and Mauldin [115]; Ramharter [253,
254]; and Hensley [139, 141, 308, 309].

7. Schmidt's Game

W. M. Schmidt [270] introduced the following two-player game, called an

(a, ß) game: let a, ß be real numbers with 0 < a, ß < 1. First Bob chooses a

closed interval on the real line, called B\. Then Alice chooses a closed

interval C B\, such that the length of A i is a times the length of BY. Then
Bob chooses a closed interval B2 C Ax, such that the length of B2 is ß times

the length of Alf and so on. If the intersection of all the intervals At is a

number with bounded partial quotients, then Alice is declared the winner;
otherwise Bob is declared the winner.

Schmidt showed that if 0 < a < 1/2, then Alice always has a winning
strategy for this game. This is somewhat surprising, since as we have seen

above, the set of numbers with bounded partial quotients has Lebesgue

measure 0.

Using the theory of (a, ß) games, Schmidt also reproved the result of Jarnik
that g7 has Hausdorff dimension 1.

Several papers have proved other results on (a, ß) games: see Schmidt

[271]; Freiling [109, 110]; and Dani [70, 71, 72]. Also see Schmidt [272,

Chapter 3].

8. Hall's theorem

If S and T are sets, then by S + T we mean the set

{s + 11 5- e S, t e Tj

Similarly, by S • T we mean the set

{st\s e S, t e T}

If S is a set of Lebesgue measure zero, then it is quite possible for S + S

to have positive measure. For example, if C denotes the Cantor set (numbers
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in [0, 1] containing only 0's and 2's in their ternary expansion), then C has

measure 0, and it is not hard to show that C + C [0, 2]; see Borel [40] or
Pavone [233]. The result is due to Steinhaus [310]; I am most grateful to
G. Myerson for bringing this to my attention.

As we have seen above, the set and hence each &k, also has Lebesgue

measure zero. In 1947 Hall proved the following theorem [126]:

Theorem 3. Every real number x can be written as x y + z,
{ where y, z e &4. Every real number x ^ 1 can be written as x yz,

where y, z e rfU-

An exposition of Hall's result can be found in Cusick and Flahive [67].

Using the notation of the first paragraph of this section, we could rephrase
the statement of Hall's theorem as follows: + <^4 R, and

[1, 00) Ç • S84.

In 1973, Cusick [61] proved that ^3+^3+^3 R, and ^2 + &2
+ ^2 + R. He also observed that 4=- R, and ^2 + ^2
+ ^2 9t R. These results were independently discovered by Divis [90] and J.

Hlavka1) [149]. Hlavka also showed that + ^4 R, and similar results.

Apparently the status of <^2 + and ^2 + is still open.
For results of a similar character, see Cusick [60]; Cusick and Lee [68];

and Bumby [47].

9. Explicit examples of transcendental numbers
WITH BOUNDED PARTIAL QUOTIENTS

In Lang [179] we find the following statement:

No simple example of [irrational] numbers of constant type, other than the
one given above [real quadratic irrationals], is known. The best guess is
that there are no other 4'natural" examples.

(Also see Lang [180].)

However, in 1979 Kmosek [167] and Shallit [275] independently discovered
the following "natural" example of numbers of constant type.

Theorem 4. Let n ^ 2 be an integer and define

(]) f(n) J) n~2i
/> 0

*) Note this is not same person as E. Hlawka!

L
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Then K{f{2)) 6 and K{f{n)) n + 2 for n ^ 3.

For example, we have

/(3) [0, 2, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, ...]

It is also possible to show that K{nf(n)) n.
For related articles, see Köhler [171]; Pethö [237]; Shallit [277], and Wu [305].

(An aside: Mignotte [213] proved that there exists a constant c such that

p
/(2) - -

Q

c
> —

q3

for all integers p and odd q. However, by combining Theorems 1 and 4, we

get the improved bound

1P/(2) - -
q

> —
8q2

for all integers q ^ 1. Also see Derevyanko [86].)
Kempner [159] had proved in 1916 that f{n) is transcendental for all

integers n ^ 2. Mahler [200] also proved this result; also see Loxton and van
der Poorten [195].

(Kempner seems to be responsible for a mistake that has been perpetuated
in several papers. He called the series in Eq. (1) above the Fredholm series,

in the belief that Fredholm studied it. Kempner referred to a paper of Mittag-
Leffler [215], but this paper discusses the series

E X'2,
0

which is very different. An examination of Fredholm's collected works [108]

did not turn up any papers on the series in Eq. (1). This mistaken attribution
was repeated by Schneider in his classic work on transcendental numbers [273],
and then repeated by other authors; see, e.g. Pethö [237]; Mendès France

[207].)
Mendès France pointed out an intriguing connection between the continued

fraction expansion of / (n) and iterated paper folding, which we now describe

briefly.
If we fold a piece of paper in half repeatedly, say n times, always folding

right hand over left hand, we get a series of 2n - 1 hills and valleys upon
unfolding. Let us denote the hills by + 1 and the valleys by - 1. Letting Xn
be the sequence of folds so obtained, it is not hard to see that

X„+l=Xn (+1) -XRn,



REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS 163

where juxtaposition denotes concatenation, and by XRn we mean the sequence

X„ taken in reverse order.

More generally, we can choose to introduce a hill or valley at the nth fold.

If we denote the nth fold by an9 then after folding with au a2, a„9 upon

unfolding we get the sequence

Fai(Fa2(---(Fan(£))•••))

where 8 denotes a sequence of length 0, and F, is the folding map, given by

Fi(X) X i -XR.
Mendès France observed that the continued fraction expansion of f(n)

could be written in terms of the folding map F}; see Mendès France [207];
Blanchard and Mendès France [33]; Dekking, van der Poorten and Mendès

France [80]; Shallit [276]; and Mendès France and Shallit [209].
More recently, van der Poorten and Shallit [248] discovered a closer

connection between paperfolding and continued fractions. Suppose we
consider the formal power series

g(X)= £ X-»eQ((l/X))
k^O

Then Xg(X) can be expanded as a continued fraction, and it is not hard to
prove that

xg(X) [i9F.x(F.x('"(F.x(X))•••))] ;

i.e. the continued fraction is given by the iterated folding of a piece of paper!
Using this result, we can prove the following theorem: let s0 1 and

8/ ±1 for / ^ 1. Then the continued fraction expansion of each of the
numbers

2 £ e,-2 -2'
i ^ 0

consists solely of l's and 2's. For example,

2/(2) [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, l, 1, 2, ...]

Let us now turn to other constructions of transcendental numbers with
bounded partial quotients.

Since the set Sd is uncountable, while the set of algebraic numbers is
countable, it is clear that almost all elements of are transcendental.
However, many investigators were concerned with the explicit construction of
transcendental elements of SB. For example, Baker proved that
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8 16 32

[0, 1, 2, 2, 1, 1, 1, 1, 33, 733, 33, ...]

and similar numbers are transcendental; see [16]. Previously, Maillet had given
similar examples, but not explicitly [201]. Other examples have been recently
given by Davison [79]. Also see Grant [120].

10. "Quasi-Monte-Carlo" Methods and Zaremba's Conjecture

In this section we briefly discuss some integration methods that depend on
rational numbers with small partial quotients. There is a large literature on
this subject; the interested reader can start with the comprehensive survey of
Niederreiter [220].

(This section is tied to the main subject in the following manner: we wish

to construct explicitly rational numbers with small partial quotients. One way
to do this is to take an irrational number with bounded partial quotients and

employ the sequence of convergents.)
In ^-dimensional "quasi-Monte Carlo" integration, we approximate the

integral

(2) f(t)dt
' [0, lp

by the sum

- Yf(*k)
Yl 1

where xlfx2, is a set of points in [0, lp.
The goal of quasi-Monte Carlo integration is to choose the points

Xi, x2, so as to minimize the error in the approximation.
In the method of good lattice points, we assume that the function / is

periodic of period 1 in each variable. We choose a large fixed integer m and

a special lattice point g e Zs. Then we approximate the integral (2) with the

sum

1 I /(-«) •

m i^k^m \m
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"Good" lattice points g make the error in this approximation relatively small.

Let h (hi, h2, ,hs) and define

r(h) n max (1, I A,-1)

1 < / O

Also define

p(g, m) minr(h)
h

where h ranges over all lattice points with

h 0, and h • g s 0 (mod m). It can be shown that good lattice points

correspond to large values of p.

Now consider the 2-dimensional case, i.e. s 2. Let g (l,g) with

gcd (g, m) 1. Then Zaremba [306] showed that

m m
^ P(g, m) ^

K(g/m) + 2 K{g/m)

Hence good lattice points correspond to rationals g/m with small partial

quotients.
For other connections with numerical integration, see the papers of Haber

and Osgood [125] and Zaremba [307].

We now turn to Zaremba's conjecture. Define

Z(n) min K (-
\nj

gcd(j,n) 1

Then Zaremba [307] conjectured that Z{n) ^ 5.

Borosh [41] showed that Zaremba's conjecture is true for 1 ^ n ^ 10000.

In this range, only two integers have Z(ri) 5, namely n 54 and n 150.

Twenty-five integers in this range have Z{n) 4; the smallest is 6 and the

largest is 6234. A brief discussion of Zaremba's conjecture up to 1978 can be

found in [220].
Borosh and Niederreiter [42] suggested that in fact Z(n) ^ 3 for all

sufficiently large n. The most extensive computation seems to be that of Knuth,
cited in [42], which verified that Z(n) ^ 3 for 10000 ^ n ^ 3200000.

Zaremba's conjecture is true for certain infinite sequences. For example,
we certainly have Z{Fk) =1 for k ^ 1, where Fk is the k-th Fibonacci
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number. It follows from the results of Kmosek and Shallit cited above that
Z(22k~l) ^ 2 for all k ^ 0.

Borosh and Niederreiter [42] showed that Z(2k) ^ 3 for 6 ^ k < 35.

More recently, Niederreiter [223] proved that Zaremba's conjecture holds

for all powers of 2; in fact, we have Z(2k) < 3 for all k ^ 0.

Larcher [182, Corollary 2] proved the existence of a constant c, such that
for every n ^ 1 there exists a positive integer j < n, relatively prime to n, such

that if

j/n [0,ai,a2, • ••, >

then

Y, < c(log n) (log log n)2
1 < / ^ m

This is close to the best possible bound O(logw), which was reportedly
conjectured by L. Moser (although I do not know a reference); the bound
would be a consequence of Zaremba's conjecture.

For other results connected with Zaremba's conjecture, see the papers of
Cusick [63, 66]; Niederreiter [224]; Sander [268]; and Hensley [315].

11. Properties of the sequence «0 (mod 1)

If 0 is a real number, by 0 (mod 1) we mean {0} 0 - [0], the fractional

part of 0.

It has been known at least since Bernoulli [26] that properties of the

sequence 0,20, 30,... are intimately connected with the continued fraction

expansion for 0. The distribution of «0 (mod 1) is a vast subject, and we restrict

ourselves to mentioning several results connected with numbers of constant

type.
Let 0 be an irrational number, and let

0 n0 < «1 < «2 < ' " ' < an < an+1 1

'be the sequence of points {£0}, 1 ^ k^arranged in ascending order.

Define

8e(n) max a, - a, _i
1 ^ i ^ n + 1
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Then Graham and van Lint [119] proved the following theorem:

lim sup n&Q(n) < oo

n — oo

if and only if 0 is a number of constant type.

Boyd and Steele [43] introduced the function /*(0), the length of the

longest increasing subsequence of {0}, {20}, {«0}. They proved that

lim mf —— > 0
K-oo I/n

and

C(0)
lim sup —— < oo

«-co yn

if and only if the partial quotients of 0 are bounded.

For some other results on {«0} connected with bounded partial quotients,

see Ennola [100, 101]; Lesca [185]; Drobot [92]; and Strauch [288].

12. Discrepancy and Dispersion

Let oo (*i, *2, *3, be a sequence of real numbers. Let I c [0, 1) be an

interval and let |/| denote its length. Define the counting function
Sn(I) Sn(I, co) as the number of terms xk, 1 ^ k < n, for which {.x^} g I.

The discrepancy Dn(xi, x2, x„) is a measure of how much the sequence

Xi,x2, deviates from a uniform distribution. It is defined as follows:

SnV, CO)

Dn{co) Dn(xi,x2, ...*x„) sup
/Ç[0,1)

Now consider the discrepancy of the sequence co (0, 20, 30, If 0 has

bounded partial quotients, then the discrepancy of co is small. In particular,
we have the following estimate: If K(9) ^ then

(-L
\loga

nDn(co) ^ 3 + 1 log n
log (k + 1) J

1 /-for a - (1 +1/5). See, for example, Kuipers and Niederreiter [173].
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For other results connecting discrepancy and the boundedness of the partial
quotients, see the papers of Niederreiter [218] and Dupain and Sös [94, 95].
Also see Beck and Chen [25] and Richert [258].

We can also consider the so-called L2 discrepancy, Tn, defined as follows:
let

s-«0'"-"»
_

and put

T„(co) -(Î/-H
It is possible to generalize the definitions of Dn and Tn to the

multidimensional case, though we omit the details. By appealing to numbers with
bounded partial quotients, Davenport [73] constructed sequences in two
dimensions with low L2 discrepancy. Also see Proinov [250, 251, 252].

Another measure connected with sequences is called dispersion. Let
co (xi,x2, and define the dispersion

dn(co) sup min [x - xk |,
x e [0,1] 1 ^ k ^ n

essentially half the distance between the most widely separated points of the

sequence x1}x2, ...,xn. (Compare with the function 80(«) in Section 11.)

Niederreiter [221] considered the dispersion of the sequence {«6}. He
showed that if 0 has bounded partial quotients, then dn(co) 0(l/n). He
also gave a more detailed estimate, showing that dn(co) is approximately
K(Q)/4n. Also see Drobot [93] and Larcher [311].

13. Connections with Ergodic Theory

Let 0 be irrational, co (0,20,...) and Sn(I, co) be defined as in the

previous section. Veech [293] developed connections between Sn and ergodic

theory. We mention one result that is number-theoretic in nature. Let

xn Sn(I, co) mod 2, and define

1 _Pe(/) hrn - 2,
n oo H \ ^ k ^ n
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if the limit exists. Then Veech showed that Pe(/) exists for all I c [0, 1) if and

only if the partial quotients of 0 are bounded.

For other connections with ergodic theory, see the papers of Stewart [286] ;

del Junco [154]; Dani [70, 72]; and Baggett and Merrill [14, 15].

14. PSEUDO-RANDOM NUMBER GENERATION

Lehmer [183] introduced the linear congruential method for pseudorandom

number generation. Let X0, m9 a, c be given, and define

Xk+i aXk + c (mod m)

for k ^ 0. For this to be a good source of 44random" numbers, we want the

sequence Xk to be uniformly distributed, as well as the sequence of pairs

(Xk,Xk+i), triples, etc.

A test for randomness called the serial test on pairs {Xk, Xk+x) amounts

to the two-dimensional version of the discrepancy mentioned above in
Section 12. This turns out to be essentially the function p(g, m) defined in Section

10. Thus linear congruential generators that pass the pairwise serial test
arise from rationals a/m having small partial quotients in their continued
fraction expansion. See the papers of Dieter [87, 88]; Niederreiter [219, 220,

222]; Knuth [170, Section 3.3.3]; and Borosh and Niederreiter [42].

15. Formal Language Theory

Let w w0wiw2 ' - - be an infinite word over a finite alphabet. We say
that the finite word a x0*i * * * x„ is a subword of w if there exists m ^ 0

such that wm + i xh for 0 ^ ^ n. We say that w is k-th power free if xk is

never a subword of w, for all nonempty words x. Here is a classical example:
let s(n) denote the number of Ls in the binary expansion of n. Then the infinite
word of Thue-Morse

t t0tit2 "' 0110100110010110

defined by tn s{n) mod 2, is cube-free.
Another way to define infinite words is as the fixed point of a homo-

morphism on a finite alphabet. For example, the Thue-Morse word t is a fixed
point of cp, where (p(0) 01 and cp(l) 10.
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A famous infinite word which has been extensively studied is the Fibonacci
word

f= 101101011011010 ••• ;

it is a fixed point of the homomorphism p, where p(l) 10 and p(0) 1.

For some of the properties of this word, see the survey of Berstel [28].
Karhumäki showed that / is fourth-power-free; see [155].

Now we define some special infinite words. Let 0 e [0, 1) and define the
infinite word w wxw2w3 • • • as follows:

w„ [(« + 1)0] - [«0]

If we set 0 (l/5 — l)/2, we get the Fibonacci word /. Recently, Mignosi
[212] proved the following theorem: there exists a k such that w is k-th power-
free, if and only if 0 has bounded partial quotients. (One direction of Mignosi's
theorem follows easily from two different descriptions of w in terms of the
continued fraction expansion for 0; see Markoff [205]; Stolarsky [287]; and
Fraenkel, Mushkin, and Tassa [107].)

16. Other Results

Let 0 be an irrational number of constant type. Let pn/qn denote the «-th

convergent to 0.

For n a positive integer, let P(n) denote the largest prime factor of n. Then

given e > 0, there exists a constant c c(0; 8) such that the number of positive
integers n ^ x with

P(qn) < c log log qn

is at most ex. This is a result of Shorey [279].

Schmidt [269] showed that if fx, /2, is a sequence of differentiable
functions whose derivatives are continuous and vanish nowhere, then there are

uncountably many numbers 0 such that all the numbers /i(0),/2(0), have

bounded partial quotients. For related results, see Davenport [74, 75] and

Cassels [51].
Other topics connected with real numbers with bounded partial quotients

not discussed in this survey include transcendental number theory (see Baker

[17]; Flicker [106]; Bundschuh [49]; Angell [11]), Fibonacci hashing on digital
computers (see Knuth [169, pp. 510-512]), dynamical systems and global
analysis (see Deligne [81]; Katznelson [156]; Herman [142, 143, 144, 145, 146];

Meyer [211]; de la Llave [193, 194]; MacKay [196, 197]; MacKay, Meiss, and
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Percival [198]; Greene and MacKay [121]; Gutierrez [122]; Rand [255]; Stark

[285]; Katznelson and Ornstein [157]; MacKay and Stark [199]; Sinai and

Khanin [282]), and in the proof of a theorem connected with Kemperman's

inequality (see Laczkovich [176]). For a connection with the 4 * entropy of a

curve, see Mendès France [208].

17. Related Results

In this survey, we have restricted our attention to real numbers with
bounded partial quotients. However, we would be remiss to omit mentioning
the work on formal power series over a finite field having partial quotients

of bounded degree. See the papers of Baum and Sweet [23, 24]; Mills and

Robbins [214]; Mesirov and Sweet [210]; Mullen and Niederreiter [216];
Niederreiter [225, 227, 226]; Allouche [8]; and Allouche, Mendès France, and

van der Poorten [10].

It is perhaps appropriate to mention the following question of Mendès

France, which asks (roughly) if a formal power series over a finite field is

algebraic and the partial quotients in its continued fraction expansion are of
bounded degree, then must those partial quotients be accepted by a finite
automaton? For a more precise version of this conjecture, see the paper of
Allouche, Betrema, and Shallit [9]. This paper also gives some examples for
which the answer to Mendès France's question is positive. However, the partial
quotients in the continued fraction for the power series of Baum and Sweet

[23], which were later described explicitly by Mills and Robbins [214], do not
seem to be accepted by a finite automaton.
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