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AN ANALOGUE OF HUBER’S FORMULA
FOR RIEMANN’S ZETA FUNCTION

by Floyd L. WILLIAMS ')

To the memory of Michio Kuga

1. INTRODUCTION

A remarkable formula of H. Huber [11] relates the class 1 spectrum of a
compact Riemann surface X and the spectral zeros of Selberg’s zeta function
{x of X. More generally, if X is a space form (not necessarily compact) of
a rank 1 symmetric space one can still assign to X a Selberg zeta function {x
and formulate a generalized version of Huber’s formula [6], [18]. Here a
decisive role is played by the Selberg trace formula.

On the other hand Weil’s explicit sum formula for Riemann’s zeta function
C [16], [17] bears some striking similarity in appearance to the trace formula.
It is now known, as a matter of fact, by a recent work of D. Goldfeld [7] that
there exists a kernel function on a suitable space such that the conjugacy class
sum in Selberg’s trace formula is precisely the sum over the primes of Weil’s
formula; i.e. Weil’s formula indeed can be interpreted as a trace formula.

Motivated by a certain ‘‘radial’’ function which occurs in semisimple Lie
theory we consider a certain test function which we plug into Weil’s formula,
and we derive thereby a formula of Huber type for {. The formula, see
Theorem 7.1, involves a sum over the ‘‘spectrum’’ of { — i.e. over its non-
trivial zeros. We derive a second interesting formula in Theorem 7.10 by
specializing the parameter s in Theorem 7.1.

Although Lie theory and spectral theory serve as a context and motivation,
the lecture which is largely self-contained requires no familiarity with these
subjects. We assume only a knowledge of basic real and complex analysis.

1) This is an expanded version of an invited Mathematical Association of America
address delivered at the winter San Francisco meeting on January 16, 1991.
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The author is thankful for and honored by the invitation extended by the
Program Committee of the Mathematical Association of America to deliver
this lecture. We dedicate the lecture to the memory of a very great mathe-
matician — a kind and humble man — a friend — Professor Michio Kuga.

2. OUTLINE OF THE LECTURE

I. Huber’s formula (as a context)
II. Riemann’s zeta function — basic facts and the Riemann hypothesis
(=RH)
III. Test functions
IV. Weil’s explicit formula
V. The Schwartz space and the RH
VI. The main test function
VII. An analogue of Huber’s formula

I. HUBER’S FORMULA (as a context)

Since Huber’s formula provides the motivation for this lecture we shall
state (for the record) this remarkable result. Neither the result nor any
understanding of it is required for later purposes.

Let G denote the group SL (2, R) of real 2 X 2 matrices with determinant
equal to 1:

c d

a b a, b,c,d, e R
(1.1) G=SL2,R) = [ ]
ad — cb =1

where R denotes the field of real numbers. Let I' C G be a discrete
torsionfree!) subgroup such that the quotient I'\ G is compact. Euler’s
classical gamma function will also be denoted by I':

(1.2) F(S)zj e 'ts1dt, Res>0.
0

The function N:I" — {1} = R defined by

- (1.3) N(P) = max|c|*, ¢ = an eigenvalue of P

1y That is, if y” = 1 for y € ', n > 0 an integer, then y = 1.
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for P e T — {1} is called the norm of I'. We shall particularly be interested
in the restriction of N to the prime or primitive elements P of I'; i.e. elements
P which generate their centralizer in I': Zr(P) = {P} = a cyclic group. Given
the norm function N we have Selberg’s zeta function ¢ [15], [5], [10] given by

(1.4) ()= I ﬁ [1 —NP)s"%, Res>1.
P=aprime k=0

¢, which admits a full analytic continuation in the complex plane, has a series
of ““topological’’ zeros (= “‘trivial’’ zeros) and certain non-trivial ‘‘spectral”’

1 1 .
zeros s = 5 = (Xj _Z) where the A, (with 0 =Xy <A; <k, < ---) are
62 62
the eigenvalues of the Laplacian — y? | — + —— | on the upper half-plane
ox? 0y?

[1" projected to T\ ] *. Here, recall that G acts transitively on [[ ~ by
linear fractional transformations:

a b
c d

defaz + b
(1.5) g.2. =
cz+d

for g=[ ]EG, Imz>0.
Moreover if SO(2) is the compact subgroup of orthogonal matrices in G then
(by transitivity of the G-action) [|* = G/SOQ), and X = Xy = T\ [[*
=I'\SL(2, R)/S0O(2) is the typical compact Riemann surface of genus> 2;
I' is the fundamental group of X. We may (and should) denote { in (1.4) by
Cx, as in the introduction. ot

If n; > 0 is the (finite) multiplicity of A and vol(T\G) = |, 1dx where
dx is a G-invariant measure on I'\ G suitably normalized!), then in terms of
the above definitions and notation one has the following remarkable formula
of Huber [11]: For s € C (the field of complex numbers) with Res > 1

(1.6) " Y T (S_Sf )r (S_;f_)= vol T\ G)

CIE RS

+ 2/ X X . _
certain N(p)f/2 — N(p) —Jj/2
) s+ 1 )
I“ . 1" primes
2 2 pel - {1}

[cosh jlog N(p)] —s+1/2 .

1Y dx is unique up to a positive constant.
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In case I'\ G is non-compact, but vol(I'\ G) < o, the zeta function (x is still
defined and (1.6) remains valid provided the n; are interpreted as the
multiplicity of eigenvalues of the discrete spectrum of X1, and provided extra
terms are added to account for contributions via the ‘‘continuous’’ spectrum

4

A r A
of Xr. Such terms, for example, may have the form 5 i lex or jR ¥

[trace of the logarithmic derivative of the ‘‘scattering matrix’’ of an Eisenstein
series] dx where dx also denotes Lebesgue measure on R and f denotes the
Fourier transform of a function f on R. In this lecture we normalize the defini-
tion of fA, say f € L1(R), by

(1.7) fA(y) = 5 eV f(x)dx for yeR.

R

Then the Fourier inversion formula is

1 A
(1.8) J) = —5 e~ f(y)dy
2 R

T

for almost all x € R, for fA € L'(R). In particular (1.8) holds for all x € R
if f is continuous.

In contrast to Huber’s original proof, (1.6) follows by plugging a
certain test function into Selberg’s trace formula and a computation of the
“‘spherical’’ Fourier transform of that test function [14], [6], [18]. Moreover,
the n; in (1.6) can be shown to coincide with the multiplicity of the spectral
Zeros s f , say § f # s; [5]"). Therefore the following diagram captures some
of the features of formula (1.6) (roughly).

1 + + .
YIfs; =s; then s; has order 2n;.
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Huber’s formula (1959)

N

specific Fourier
transform computation

Selberg trace formula (1956)

basic
Lie theory

A

(i) non-trivial zeros sji of Selberg’s zeta
function (1956) and their multiplicity »;;
more precisely a sum of the form

w2 ()

for a fixed parameter s, Res > 1

features: (ii) a discrete sum involving the log of

the norm of certain prime e¢lements

(iii)
. logarithmic
certain S
. derivative of
Fourier . dx
the gamma
transform ‘
R function

(in case I'\ G is non-compact)

On the other hand within the context of basic number theory!) one has

(applying the ‘‘analogy functor’’) the following parallel of the preceding
diagram (in the form of a question)

what corresponding formula?

l . .
ﬂ\ what Fourier transform computation?

Weil’s formula (1952) (cf. remarks of the introduction)

Iy All of the basic facts we need will be presented in the next section.
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(1) non-trivial zeros of Riemann’s zeta function (1859) and their
multiplicity

(i) the classical von Mangoldt function

(iii) as before

The purpose of the lecture is to present the ‘‘corresponding formula’’ (i.e. the
analogue of Huber’s formula in the context of elementary number theory).
Thus we shall introduce a specific test function, whose Fourier transform can
be determined, and apply Weil’s formula, as indicated in the introduction.

As a closing remark for this section we note (for the record) that one can
indeed assign a ‘‘von Mangoldt function’’ A to the pair (G, I'). Namely, every
vy eI — {1} is the power of a unique prime p:vy = p/™ for some unique
integer j(y) > 1. One sets

def log N(p)
(1.9 A(y) = L Np -1

| JI. RIEMANN’S ZETA FUNCTION - basic facts and the Riemann hypothesis
(=RH)

Riemann’s zeta function { is defined by

(2.1) C(s) = i —1— forr Res > 1.

n=1n°

This function was also considered by Euler (100 years before Riemann). The
basic facts concerning { are summarized as follows:

THEOREM 2.2. (i) { is holomorphic on Res > 1 (since the series in
(2.1) converges uniformly on compact subsets of Res > 1) and ( extends
to a meromorphic function { on C having exactly one pole: s =1 s
simple with residue =1

(i) C satisfies a functional equation
1-=5
2

n2G(l—s) " L)

"5 )

(iii) { has an Euler product representation:

(2.3) ()= ]I _ for Res>1.

p = prime > 0 1 - p~s

s—>1—s:




AN ANALOGUE OF HUBER’S FORMULA 139

Note that equation (1.4) for Selberg’s function is the analogue of (2.3).
(iv) ((s) =0 for s=—-2,—4,—6,—-8... This follows from (ii) since
1
—1——=0 for s=—1,-2,—3,—4,..40)+0 asinfact §0) = —5.
I'(s)
The zeros {—2n}>_, are called the trivial zeros of C.
&) If ((s)=0 and s 1is non-trivial (i.e. §# — 2n  for some
n=1,2,3,4,...) then seC—R and 0<Res< 1. The world famous
Riemann Hypothesis (RH) (which remains un-proved) states that for such an

s, Res = - !
2
(vi) C_(s) = Z“’_IA(n) where A is the (von Mangoldt) function
C s
defined by
ot logp if n#pk,p=prime,
(2.4) A(n) = k,p>0,

0 otherwise .
Some remarks. Definition (1.9) is the analogue of definition (2.4).

CI
> (0) = log 2.
. og2m

Let y(x) = ), 1 < n<x M) for x > 1. This function y:x = y(x) (Cheby-
shev’s function) is the subject of the celebrated prime number theorem (PNT)
V()

b
if « is the function which counts the number of primes not exceeding a given
number (T(X) = X, ,crp-a pime) then the PNT gives the asymptotic

S S log x .
growth of m at oo:mw(x) ~ ——: i.e. lim, . ,7w(x) —— = 1. This celebrated
log x X

result has an interesting history going back to Legendre, Gauss, Chebysheyv,
Hadamard, de la Vallée Poussin, and others; cf. [12].

which states that y(x) ~ x as x = oo; i.e. lim, -,

= 1. Equivalently,

III. TEST FUNCTIONS

Suppose g is a measurable function on R which satisfies | g(x) |
< Me~-?*lvx e R, for some M, b > 0. Then the function x = e’**g(x) on R

is in L'(R) for |Ims|< b. One can thus define the complex Fourier
transform g of g by
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(3.1) g(s) = s eisx g(x)dx

: R

for — b < Ims < b; cf. (1.7). g is holomorphic on the strip — b < Ims < b.
Although we could consider a broader class of functions (as considered in

chapter 17 of [13], or even more generally in [1]) the following definition will

Isuffice for our purpose.

Definition 3.2. A test function is a continuously differentiable function
g on R which satisfies

(3.3) e | < Me=l+, | g'(x) | < Mye~tlx

1
vx € R, where M, M; > 0 and b > —2— ; g’ = the derivative of g.

In application the function g which we consider later will in fact be infinitely
differentiable. It is easy to check that a continuously differentiable function
with compact support is a test function (where one takes b =1 > 1/2).

We shall need the ‘“shifted’’ Fourier transform g* of a measurable function
g satisfying | g(x) | < Me~?Ml;

(3.4) o*(s) &3 (i (1— s)) - s e(s_i)xg(x)dx.
R

2

1
By the above remarks g* is defined and holomorphic on 5 —b<Res<b

1
+ =
2

IV. WEIL’S EXPLICIT FORMULA

We turn now to Weil’s formula mentioned in the introduction. The formula
‘has been formulated, quite generally, for so-called L-functions attached to
'Hecke grdsencharacters in the context of an algebraic number field K [16],
f[17]. We shall consider Weil’s formula only in regard to the Riemann zeta
function {: K = the field of rational numbers. The reader with interests in the
general formula for arbitrary K may consult [13], [1] for detailed proofs.
' The typical non-trivial zero of { will be denoted by p and we shall write!).

:(4-1) n, = the multiplicity of p .

1) See Theorem 2.2, parts (iv) (V).
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The logarithmic derivative of T' (see (1.2)) will always be denoted by y:
4.2) vET/T.

v is a meromorphic function whose poles (all of which are simple) are
0, — 1, —2, — 3, — 4, ...; the residue at each pole is — 1.

THEOREM 4.3 (Weil’s Explicit Formula). Let g be a test function
(Definition 3.2) with shifted Fourier transform g* (definition (3.4)) and
let A be the von Mangoldt function (definition (2.4)). Then in the notation
of (3.1), (4.1), and (4.2)

i

limr-o Y 1, g*(P) (défng*(p))=§( ) +§(—é) — g(0)log ™

> 2
(44) |Imp|< T
Yy A(”)[ (logn) + g(— logn)] + : lim ' g()Rey 1+it dt
J— —— 0 . ma— 5. 05 S— J—
nzll/ﬁ guog g g o T » 4 >

where all limits here are finite

Summation formulas quite similar in spirit to (4.4) are given in [3], [9].
The prototype of such formulas is the explicit formula of von Mangoldt in
the theory of prime numbers:

) xP 1 1
(4.5) y@)=x~-lim Y n—->0)—-log|l-—
T-o lmpl<T = P G 2 x?
for x > 1 (say x non-integral), for y the Chebyshev function defined following
(2.4); cf. Theorem 29 of [12].

V. THE SCHWARTZ SPACE AND THE RH

Let C=(R) be the space of infinitely differentiable functions on R and let
C. (R) be the subspace of functions in C=(R) which have compact support.
For f e C*(R) and integers n, m > 0 let

m

dmf
(5.1) Pn.m(f) = sup | x”
dx™

(x)| over xeR.

The Schwartz Space S(R) of R is the vector space {f e C>(R) |p,,,m(f)
. < o Vn, m}. Equation (5.1) defines a family {p, ,}n, m > 0 of seminorms
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Dn.m on S(R), which therefore generate a locally convex topology T on
S(R) ). 7 is described as follows. For € > 0, F a finite collection of the inte-
gers n, m, and f e S(R), let

N(f, e, F) = {fi € SR) | pp,m(fi — f) <evn,m e F} .

Then for u C S(R), uis open < Vv f € u 3 some (g, F) such that N(f, €, F) C u;
i.e. {N(f, &, F)} is a basis of t.

The canonical example of a Schwartz function (i.e. a function in (S(R))
is the function x — e ~2*, where a > 0 is fixed. Another example (which is
the key example for this lecture) is the function g,:x — (cosh x) % where
z € C is fixed, Rez > 0. To see that g, is indeed a Schwartz function one
checks by induction the following.

PROPOSITION 5.2. For certain constants c/(z) depending only on
d"g.(x)

z one has =20 X ._,c@tanhix,m =0,1,2,3,... Hence
d"g.(x) _ Ren)] :
, P < M, (2) e~ Redxl for constants M, (z) depending only on m, z.
xm

In particular if Rez > 1/2 then g, is a test function in the sense of
Definition 3.2.

The space C; (R) is contained in S(R) and, similarly, can be assigned a
topology — the so-called inductive limit topology — such that the inclusion
map C; (R) — S(R) is continuous. A continuous linear functional 7' on
C7(R) is called a distribution. A distribution T is a tempered distribution if
T extends to a continuous linear functional (necessarly unique as C; (R) is
dense in S(R)) on S(R). Note that in terms of the seminorms p, , on S(R)
defined by (5.1) a linear functional T on S(R) is continuous <« 3¢ >0
and a finite non-empty subset F' of the integers n, m such that IT(]‘)I
< ¢mMax,, merPn,m(f) VS € SR).

We have noted earlier that a continuously differentiable compactly
supported function on R is a test function. In particular each g € C. (R) is
a test function, and thus g plugs into Weil’s formula (4.4). Define therefore
a linear functional 7%: C. (R) = C (Weil’s distribution) via the left hand side
of (4.4):

def.

(5.3) TV (&) = Y ,&*(p) = limr-. Y n, g*(p)

b
[Imp|< T

1) That is, (S(R), 1) is a topological vector space and T has a basis consisting of convex
sets [4].
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for g € C7(G). J. Benedetto has shown in [2] that if the RH holds then 7%
is tempered. Benedetto and D. Joyner have established the converse. Thus one
has the following quite beautiful result.!)

THEOREM 5.4 (Benedetto, Joyner). The Riemann hypothesis holds <
the Weil distribution TY is tempered.

Theorem 5.4 is preceded by the following more classical result.

THEOREM 5.5 (Weil [16]). The Riemann hypothesis holds < the Weil
distribution TV is positive definite: TW(g*g®) >0 for ge C;(R)
where g°(x) C (=% for x e R.

Here f, * f, denotes the convolution of functions f;, f2:

(5.6) (fi*f2) (%) = § fix =) f(¥)dy .
R

VI. THE MAIN TEST FUNCTION
Fix z € C with Rez > 0 and define g, on R by
6.1) g.(x) = (coshx)-= for xeR.

1
By Proposition 5.2, g. € S(R) and in fact g, is a test function if Rez > 5

— the main test function which we shall consider. The author’s motivation
for considering g, is as follows. If one is given a so-called connected rank
1 semisimple Lie group G (for example, G = SL(2, R) in (1.1)) then using a
so-called Cartan decomposition of G one can assign a radial component
t(x) 2 0 to each x € G and thus construct a function g, on G by setting
g,(x) = (cosh#(x)) ~%. Hiiber’s formula (1.6) is obtained by plugging this
function into Selberg’s trace formula [6]; a side computation of the
‘‘spherical’’ Fourier transform of this g, is needed.

We shall need, similarly, the Fourier transform of g, in (6.1). Since
coshx > e_|2_| , | g.(x) | < 2Rexe-Rezlxl (which is Proposition 5.2 for m = 0
there). By (3.1) therefore (with b = Rez)g, is defined and holomorphic on
— Rez < Ims < Rez. Since g, is an even function one has for s = x € R

1) Added in proof: see [19].
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o

6.2) 2,(x) = 2§ (cos tx) (cosh t) ~*dt
0

where by a table of integrals!), the latter integral is

e | |
r{f+2)r(2-2).
rm (2 2/ \27 2

. z Si z si
On the other hand the functions s—T (5 + E) , I (5 - —2~) are holo-

morphic on — Rez < Ims < Rez. We therefore get

PROPOSITION 6.3. The complex Fourier transform g, of g, in (6.1)is
given by

A 221 z Si z Si
(6.4) g2.(s) = rf-+—-|r{---—
I'(z) 2 2 2 2

for —Rez <Ims < Rez (the domain on which g, is defined and

' holomorphic); here Rez > 0; see definition (3.1).

VII. AN ANALOGUE OF HUBER’S FORMULA

In place now are all of the ingredients needed for the derivation of the main
formula (Theorem 7.1) of the lecture — an analogue of formula (1.6). We
derive it by plugging the function g, into Weil’s formula (say z = s — 1/2
with Res > 1 to guarantee, as pointed out, that g, is a test function). Since

A .\ A [ A [ - i
g. is even g, is also even. By Proposition 6.3 g, (E) + g, (—2~) = Jg, (—2—)
271 z 1
= 2 ry—---|r
I'(z) 2 4

221 z 11 z 1 (1 X
iti A))=—-T(-—--|-- rf{-+-1-- . F <
nition (3.4)) r@ r (2 5 (2 )) (2 + 5 (2 p)) or our g

T
which is a nice Schwartz function the principal value limy -, ms in (4.4) can

1 5 1 .
+ Z) . Similarly, g*(p) =&, (i (5 ~ p)) (defi-

(NP ]

i

- T

be replaced by the Lebesgue integral s . Finally g,(log n) 3 (cosh log n) —=
R

1y [8], for example, page 506.
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so that Theorem 4.3 gives (for z = s — 1/2 with

2
s+ 1 s—1
I
2
Res > 1 -1.e. Rez > 1/2).

THEOREM 7.1. Fix se€ C with Res> 1. Then in the notation of

(4.1), (4.2)
n : S—p s—(1-p)
e 5 (2 (2
2) (T) [Imp|< T

& (n) _sia
_ _2 hl
_ r(g)r(‘”l) Yo, Y (—2) [coshlogn] "2

2
(7.2) .
1Y | —s42
nl’ (s——)z 2
2 47
— logn +
) s+ 1 s —
ry{—-|r{——
(2) ( 2 )
ol
n-2""2 1y 1§, 1 it
+ Ci{s—=]— 1 g--()Rey (—+— dt
S s+1 2/ 2n YR 2 4 2
IR D '
2 2

for teR.

We note in regard to the integral in (7.2) one has

1 (, -
—§ g L(ORey |-+ —| ar
27T 2

(7.3) R

1
= e— As_l t —+_
o Lg 2()\11 dt
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;since §S_% is even and since y(s) = y(s). In fact if ¢ is an even function

g

, ’ 1 it 1(7 1 it
s <l>(t)Rew(Z+5)dt=— _Tq>(t)[\y(z+5)

_T 2,
+ v ! it.dt
4 2/

'where by the change of variables

t—> —t T(I)(t) L dt = ' d(—1) 1+£€ dt
Jpovig) ] peon(54)

= ' o (1) 1+l—t dt
) pov i3] e

~T

On the other hand by page 148 of Barner’s paper [1]

THEOREM 7.4. For a,b>0,g € S(R)

1 5 7 o 0 pe(l-a)bx
(7.5) —\| 2Oy (a+£— dt = [g( ) _ be g(—x)] e ~%*dx where
21 ) & b "

X 1 —e

2(t) = g(—1) for t e R.
Given equation (7.3) we therefore have

PROPOSITION 7.6. In formula (7.2)

(7.7) _ L ) 1+E dt
A B » w(4 2)
2

| 2e3/2x L
= — — ————(cosh x)2 e~ 2*dx .
o Lx 1—e™ %

Note that in the sum Y, » in formula (7.2), p ““‘corresponds’ to the zero
S ;’ of Selberg’s zeta function in formula (1.6) and 1 — p (which is also a zero
- of £ by the functional equation in (ii) of Theorem 2.2) corresponds to the

' Zero sj' .
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As an application take s = 3/2 in Theorem 7.1. By Legendre’s duplication
formula

J S+1 — -5 — -1/ _‘/__Ezl_
F(E)F(T)_ZI Y/nL(s) = 2 121/E2 ik

n
. choose z =3/4 — p/2
sinmz

In the functional equation I'(z)T' (1 -z) =

P so that

]—Z=l+l_)=s__(l_;£)_—>r 57P T S_____(_l_—_p_) = .ﬂ
4 2 2 2 sin Tz

3n =« 2
sin AL 4 =[ cosEJrsinE .
2 p) 2

For s = 3/2 formula (7.2) in conjunction with Proposition 7.6 therefore
reduces to

nlimro e ) ki

p np . p
lImp|< T COS—E— + sin —

» A(n) n logn
= —ZI/EZn:l

Vn nr+1 /2

+ 27

1 1 2e3x/2
+_l/§ o ;—m(COShX)—I e~ 2Xdx .

Via the change of variables x = /4 the latter integral I is

j“” [4 2031/89 di
- Y Yo
o Lt (I—e-12) (et/4 4 e /%)

(7.9) © [e—t/2 e—1/8
0 J 3

et/4__e__t

3

Te-12 e s
T
o t 1 —e
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Thus by page 332 of [8], [ = — log£+ 1 (g) , and by (7.8) we get

THEOREM 7.10. In the notation of (4.1), (4.2)

) n
nlimr.e ), P
p np . Tp
[Imp|< T COS———2 + sm —

- "’21/22::1

A(n) n logn 1
+ 21 + —2[10g2 + y(3/8)] .

Vi1 )2 V2
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