
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 38 (1992)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SIMPLE PROOF OF A THEOREM OF THUE ON THE MAXIMAL
DENSITY OF CIRCLE PACKINGS IN $E^2$

Autor: Hsiang, Wu-Yi

DOI: https://doi.org/10.5169/seals-59487

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 18.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-59487
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique, t. 38 (1992), p. 125-131

A SIMPLE PROOF OF A THEOREM OF

THUE ON THE MAXIMAL DENSITY OF CIRCLE PACKINGS IN E2

by Wu-Yi Hsiang

Introduction

The classical circle packing problem is to find out how densely a large

number of identical circles can be packed together. In the limiting case of
infinite expanse, one seeks the maximal density that can be achieved by all

possible circle packings of the whole Euclidean plane E2. A simple basic fact
in circle packing is that a circle can be surrounded by six kissing circles in a

unique, tight arrangement. Intuitively, this is clearly the tightest local circle

packing and it is also easy to see that this type of tight local packing can, in
fact, be infinitely repeated to fill the whole plane. Therefore, it is rather natural
to expect that the above regular, hexagonal type of circle packing will be the
densest possible circle packing. A proof of the above expected maximality of
the density of the hexagonal circle packing was first given by Thue in 1910

[Thu]. In this short note, we shall give another proof of the above interesting
basic fact of plane geometry which is simple, elementary and short.

Local cell and local density

To each given circle T0 in a given packing it is quite natural to
associate a surrounding region which consists of those points that are as close
to its center as to the center of any other. We shall call it the local cell ofT0
in y/ and denote it by C(r0, &). The local density of at T0 is defined to
be the ratio between the areas of the circle and its surrounding local cell.
For example, the local cell of any circle in the above hexagonal regular
packing is always a circumscribing regular hexagon. Therefore, it is easy
to see that the local density of the above packing at any circle is equal to
7t/]/Ï2 0.906899682... Observe that the (global) density of a packing is
clearly just a weighted average of the local densities of its individual circles,
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a universal upper bound of the local density is automatically also an upper
bound of the global density. Therefore, the proof of Thue's theorem on the

maximality of the global density of the hexagonal regular circle packing can
be reduced to the proof of the maximality of the local density of the local
hexagonal circle surrounding, namely

Theorem. The optimal universal upper bound for the local density of
circle packing in E2 is equal to n/]/l2 and it can be realized as the

local density when and only when the local cell is a circumscribing regular
hexagon.

Proof. Let T0 be an arbitrary circle in a given circle packing N(T0) be

the set of neighboring circles whose local cells have common edges with the

local cell of T0 and N(T0) be the subset of N(T0) whose centers are within a

distance of 2.30 times the radii. We shall call N(T0) the set of neighbors of
A

T0 and N(T0) the set of close neighbors of T0.

Choose the center of T0 to be the origin and the common radii to be the

unit of length. Let Oy be the center of Ty e N(T0) and set Aj to be the

intersection point of OOj and T0. In case that both OOy and OOj+1 reach

the upper limit of 2.30, AjAj+] is larger than or equal to 2/2.30 and hence

the angular separation 0y ^A~A^+1 is at least

(1) 2 Aresin I — I 0.89959372 > —sin I — 0T
\2.30 / 7

Since the base angles of the isosceles triangle AOOyOy+i is considerably

smaller than n/2, namely, Arccos | j 1.120999466, the angular separa¬

tion, Aj~A}+ i, will always be greater than the above 2 Arcsin I | if one(-)«\ 2.30 J

or both center distances are less than 2.30. Therefore, there can be at most
six close neighbors.

Case 1: Suppose that all the neighbors are close neighbors, namely,

N(T0 N(T0). Let {9y; 1 <y ^ n) be the angular separations between the

adjacent A9s and T{Aj) be the circumscribing n-gon bounded by the n

tangent lines at the A's. Then, it is easy to see that T{Aj} is always a subset of
the local cell C(T0, &) and the area of T{Aj} is given by

" Oy _ Oy 71 Oy 71

(2) ^ tan-, Y, - 7i,
y 1 2 2 7 2 2
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Now, it follows easily from the convexity of the function tan x that

71 0 ^

(3) £ tan — ^ n tan - n ^ 6

j — i 2 n

n /- tTherefore the area of C(T0i &*) is at least equal to 6 tan — 2J/3 and it is
6

equal to 2]/3 when and only when C(T0, &) is itself a circumscribing

regular hexagon.

Case 2: Suppose that N(T0) iV(r0), namely, there is at least one
neighboring circle with center distance exceeding 2.30. Let T' be such a neighbor
of F0.

Let us first consider the most critical situation that T' touches two close

neighbors, say Tx and T2, which are actually touching neighbors of T0. Then
the geometry of the above four touching circles is represented as in Figure 1

where

0 0 0
(4) OVsec — OH =2 cos — HBX cot

2 2 2

and the intersection of C(T0, t?) and the angular region of 0i ^^42 0^42 is

the pentagon OAiBlB2A2. Since it is assumed that OV > OH > 1.15, it
follows from (4) that 0i lies between n/2 and 2Arccos0.575 1.916384358.

0
Moreover, the area of the quadrilateral OAxVA2 is equal to tan — and the

2

area of /S.VB2BX is equal to VH • HBX and it follows from (4) that

VH • HBicot — VH2cot - sec - - 2 cos -2 2 \ 2 2

os^-T2
2

COS2 01

01 0i sin0!
cos — sin —

2 2

Therefore, the area of the pentagon OAxBxB2A2 is given by

A,f\ x „
öi COS2 0i 71

(6) A(0i) tan — - 2 - < 0j < 1.916384358
2 sin 0i 2
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Figure 1

Set

(7)

Then

(8)

0 0 COS2 0 71

\j/(0) tan - - - - 2 - < 0 < 1.917
2 2 sin 0 2

1 0 cos 0
\|/'(0) - tan2 - + 2 (1 + sin20)

2 2 sin2 0

1

{(1 -COS0)2 + 4 cos 0(2 - cos20)}
2 sin2 0

1

2 sin2 0
{1 + 6u + u2 - 4u3}
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where u lies between cos (1.917) and 0. From (8), it is easy to show that \|;'(0)

has exactly one root 0O in the above range of [n/2, 1.917], namely, i|/'(0) > 0

(resp. < 0) for - < 0 < 0O (resp. 0O < 0 < 1.917). Therefore
2

0
(9) i|/(0) ,4(0) - - ^ min

2

1 _ n/4 0.214601836

(Î). »(••».')}-w(|)

Therefore, if there are at least two non-close neighbors, then the above

estimate already implies that the area of the local cell C(T0 &) must be

more than n + 0.42 > 2]/3.
Finally, let us consider the remaining case that there is exactly one non-close

neighbor of T0. If the number of close neighbors of T0 is less than 6, then the

proof of Case 1 also applies to N(T0, £?) instead of 7V(r0, £?). If the number
of close neighbors of T0 is equal to 6, then the area of C(r0, £?) is clearly
bounded below by

(10) .4(6,) + £ tan ^ ^ .4(6,) + 5 tan ^
j 2 2 10

7C

where 6, may assume to be between - and 1.92 without loss of generality. It

A 0
follows from (9) that ,4(00 ~ ~> 0-2146 and it is easy to see that

/11X r 271-0! / 0! \ ^
2TI - 1.917

(11) 5 tan 71 ^ 5 tan (71 - 0.9585) > 0.15
10 \ 2 / 10

and hence

a 271-01 /-i(0i) + 5 tan > 71 + 0.3646 > 2l/3
10

This completes the proof of the theorem and hence also the theorem of
Thue that 7i/]/Ï2 is indeed the optimal upper bound of global density of circle
packings in E2.
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Remark on the uniqueness of the finite packings
OF MAXIMAL DENSITY

All natural or practical examples of circle packings such as bees living in
a honeycomb or a bundle of fibre-glass optical tubes are always packing
problems of a finite number of circles (i.e. packings of their cross-section

circles). The infinite circle packings of the entire plane of E2 are actually the

limit situation of the finite circle packings. Therefore, it is natural to give an

appropriate definition of the concept of global density for a finite circle

packing. We propose the following definition of a cluster of circles and the

(global) density of a cluster of circles, namely

Definition. A packing of finite number of equal circles is called a cluster

of circles if any two of them can be linked through neighboring pairs of center
distances less than 2]/2 times the radii.

Let 9 be a given cluster of circles. Then, an extension, 9*, of 9 is called

a saturated coating of 9 if all circles of 9*\ 9 are neighbors of some circles

in 9 and it is impossible to add any more such neighbors to 9*. Observe that

every circle in 9 has a saturated set of neighbors in 9* and hence has a well-
defined local cell with respect to 9*. The usual weighted average of all the

local densities of circles in 9 with respect to the given saturated coating 9"*
is defined to be the density of 9 in 9"*, i.e. p(9 rel 9'*).

Definition: The global density of 9 is defined to be the least upper bound
of the densities of 9 in all possible saturated coatings of 9, namely

p(9) l.u.b. {p(9 rel 9*)}
where 9* run through all possible saturated coatings of 9.

Uniqueness Theorem (On finite circle packings of maximal density).

7i/]/Ï2 is still the maximal possible global density of all clusters of circles,
and the global density of a cluster of circles, 9, attains the above maximum

of n/]/\2 when and only when 9 is a subcluster of circles in the

hexagon packing.

Proof. It is again a direct consequence of the above Theorem on the

maximal local density and its uniqueness.
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