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UNE REMARQUE SUR LE SPECTRE DES SOLUTIONS MATRICIELLES
DE L’EQUATION DE RICCATI

par Jean-Pierre OTAL

Soit M une variété compacte de dimension » + 1, munie d’une métrique
riemannienne de courbure strictement négative. Le flot géodésique ¢, de cette
métrique laisse invariante la mesure de Liouville normalisée sur le fibré unitaire
T1(M), mesure que nous noterons A. Nous nous intéressons dans cette note
a estimer ’entropie de la mesure A pour le flot ¢,: nous déduirons d’un
théoréeme de comparaison pour I’équation de Riccati (Théoreme 2) une
inégalité vérifiée par les exposants de Lyapounov du flot géodésique qui
contient comme cas particulier une nouvelle minoration de I’entropie de la
mesure A (Corollaire 5).

Rappelons d’abord briévement la géométrie du revétement universel M de
M; c’est une variété difféomorphe a I’espace euclidien qui se compactifie en
une boule topologique par I’ajout d’une sphére a ’infini (cf. [KI]). A un
vecteur v de T (1\7[) sont associées deux sous-variétés. L’une, dite stable, est
formée des vecteurs dont I’orbite par le flot géodésique ¢, est asymptote a
celle de v lorsque ¢ tend vers + oo; ’autre, dite instable, est caractérisée par
la mé&me propriété lorsque ¢ tend vers — oo. Chacune d’elles est difféomorphe
a l’espace R” et se projette difféomorphiquement par 1’application
T TI(M) — M sur la variété M.

On notera H,, 'image de la sous-variété instable du point v: c’est donc
une hypersurface passant par le point 7t(v), orthogonale au vecteur v en ce
point. Sa géométrie au point 7 (v) est décrite par la deuxiéme forme fondamen-
tale, qui mesure la dérivée de la normale unitaire le long de H,, et nous
choisirons la normale pointant dans la méme direction que v. C’est un
endomorphisme symétrique de 7'(M) dans lui-méme; pour I’horosphére
instable, cet endomorphisme A4, est strictement positif, alors qu’il est négatif
pour 1’horosphére stable.

Une formule de Pesin (cf. [P]) exprime P’entropie 4, de la mesure de
Liouville de la maniére suivante:

hy, = s trA,d\ .
T'(M)
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Le terme tr A,, trace de ’endomorphisme A, s’interpréte comme la courbure
moyenne de ’horosphére H, au point n(v).

Rappelons que la fonction v A, est holderienne; donc le théoréme
ergodique de Birkhoff nous permet de remplacer I’intégrale spatiale dans la
formule de Pesin par une intégrale le long de presque toute géodésique.

Fixons un vecteur v € T'(M). Le long de Porbite ¢~ ¢,(v) ’endo-
morphisme Ay, que nous noterons A(f) est solution de I’équation de
Riccati:

A'(@t) + A2() + R(®) = 0 .

Dans la formule précédente A’ (¢) est la dérivée covariante de A (¢) le long
de la géodésique 1 o ¢,(v) et R(t) est I’opérateur de courbure dans la
direction du vecteur ¢,(v). Dans une base paralléle de I’espace orthogonal du
vecteur ¢,(v) le long de I’orbite ¢~ ¢,(v), les opérateurs A(¢) et R(t) se
représentent par des matrices a »n lignes et n colonnes; dans ces coordonnées
la dérivation covariante n’est autre que la dérivation usuelle des matrices.

Dans ce qui suit, nous supposerons que la courbure sectionnelle de la
| variété M est strictement négative et donc que ’opérateur R(f) a un spectre
compris entre deux constantes strictement négatives — a2, — b2.

Le résultat suivant devrait étre bien connu, mais n’en ayant pas trouvé de
référence, nous en donnerons une démonstration.

PROPOSITION 1.  Soit t— R(t) une fonction C' d’un intervalle de
R a valeurs dans les matrices symétriques n X n, notons o/t) la i-eme
valeur propre par ordre décroissant de R(t). Alors, la fonction t— o(t)
est une fonction Lipschitz, dérivable a droite et a gauche en tout point; de plus
la constante Lipschitz de o; ne dépend que de la norme C' de la
fonction R.

Preuve. 11 nous suffit de montrer que pour tout k, la somme des k plus
grandes valeurs propres de R(¢) est une fonction Lipschitz comme dans
I’énoncé de I’affirmation précédente.

Rappelons la relation d’ordre suivante sur R”, bien adaptée a I’étude des
valeurs propres des matrices symétriques (cf. [GL]). Soient X = (x;, X2, .., X)
et Y=©1,Y2,..,Y,) deux vecteurs de R”. Notons X = (1, ..., x,) et
Y =0y, ..y yn) les vecteurs obtenus a partir de X et de Y en réordonnant
leurs coordonnées respectives par ordre décroissant.

Nous écrirons X X Y si et seulement si on a, Vk < n:

i=k i=k
Y x: < |

i=1 i

Vi .

1l M N
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On notera en outre X <Y si X <Y et si

Si A est une matrice symétrique réelle, on notera o(A4) le vecteur de R”
obtenu en rangeant par ordre décroissant les valeurs propres c;(4) de la
matrice A.

On a alors, pour deux matrices symétriques S et 7, ’inégalité suivante de
Wielandt (cf. [GL]):

(1) c(S+T7T)—-o(T)<c(S).
Ecrivons un développement limité a ’ordre 1 de R(¢ + /#) au point ¢:
R+ h) = R(@) + hR'(¢) + ho,(h),
ou la matrice o,;(h) tend vers 0 uniformément en ¢ lorsque 4 tend vers 0.

Appliquons la relation (1) aux matrices S et 7 vérifiant S + T = R( + h)
et T = R(t) + hR'(t), il vient:

s(R(t + 1)) — o(R(t) + KR’ (1)) < ho(o.(h)) .
1
Donc les vecteurs P (c(R( + 1) — o(R(?))) ont les mémes valeurs d’adhé-

— 1
rence dans R” lorsque 4 tend vers 0 que les vecteurs > (c(R(®) + AR'(D)
~ o(R(1))).

Or les coordonnées de la fonction vectorielle # = o (R(f) + hR’(t)) sont
des différences de fonctions convexes (ceci découle de (1)). Donc, la limite de

1
de P (c(R(t) + hR'(t)) — o(R(2))) existe & droite et & gauche en tout point.

De plus, par convexité, la k-iéme coordonnée de cette dérivée est bornée en
termes des vecteurs 6 (R(?) + R'()) — 6(R(1)) et 6(R(?) — R'(2)) — o (R(?)).
Ceci termine la démonstration de la proposition 1. [

Notons o (— R(?)) = (0,(¢), 65(¢), .., 6,(t)). Pour étudier une matrice
A(?), solution de I’équation de Riccati, nous allons comparer son spectre aux
solutions des n équations scalaires:

z; (1) + 2} (1) = oi(?t)

pour i =1, ..., n.
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Puisque la fonction o6,(¢) est strictement positive et bornée, il est connu
que cette équation posséde deux solutions définies sur toute la droite; 1’une
de ces solutions est strictement positive, I’autre est strictement négative. Nous
noterons z; la solution positive.

‘ Les théoremes de comparaison classiques (le lemme de Gronvall) entrainent
que, en tout point de R, on a: z; < z;_; de sorte que le vecteur (z4(¢)) a ses
~coordonnées arrangées par ordre décroissant.

Soit A(A(?)) = (M (@), M(2), ..., Ma(f)) le spectre, arrangé par ordre
décroissant d’une solution A(¢) de I’équation A’(¢) + A2(¢) + R(¢) = 0,
définie sur un intervalle de R. Rappelons que, puisque la matrice R(¢) est
symétrique et différentiable comme fonction de ¢, la matrice A(¢) est
symétrique, par le théoréme d’unicité des solutions d’une équation
différentielle.

On a alors:

THEOREME 2. On a, avec les notations précédentes: (— \i(t))

< (= z()).

Preuve. T.a solution A(z) est C! en tant que fonction de ¢; d’apreés la
proposition 1, la fonction A;(f) possede donc, pour tout i, une dérivée a
gauche en tout point. Notons A; (f) cette dérivée au point .

LEMME 3. Soit A(t) wune solution de I’équation de Riccati définie sur
un intervalle I de R de spectre (\i(t)). Pour tout tel, ona: A (t)
+ A{(1)) < (0:(t))-

Preuve. Soit & un nombre strictement négati{/; appliquons la relation (1)
~aux matrices S et T telles que S+ T = A + h), T = A(f) — hA%*(?). On a,
dés que 4 est suffisamment petit: 6(A4(7) — hA2(2)) = (M(f) — hA}(?)). Donc,

Mt + h) — M) + BV(@) < MA@ + h) — A(F) + hA%(D)) .

On obtient le Lemme 3 en faisant tendre A2 vers 0, apreés avoir divisé par

h. U

| Remarque. Le lemme est encore valable, avec la méme démonstration, si
le vecteur des dérivées a gauche de (A;(¢)) est remplacé par le vecteur des
dérivées a droite. En effet: X < Y est équivalent a — X < -Y.
Nous allons appliquer le lemme ci-dessus aux solutions de I’équation de
Riccati qui nous intéressent, c’est-a-dire a celles qui sont définies sur toute la
droite.
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Soit # un nombre réel. On sait, puisque la métrique étudiée est sans point
conjugué, que la solution de I’équation de Jacobi J'' () + R(¢)J(¢) = O telle
que J(u) = 0 et J'(#) = Id est non singuliére pour # non nul. La matrice
J (£)J~1(t) = A*(t) est alors solution de I’équation de Riccati sur la demi-
droite ¢ > u. Il est connu d’aprés [G] que

A() = lim A“().

U— — »

La solution A4%(f) est indéfinie au point u et équivalente a Id pres de

I —u
ce point.
On peut construire de la méme facon chaque solution scalaire z;(¢), a

partir de la solution z7(¢), équivalente a prés du point u et positive pour

I —u
1> u.

Puisque chaque fonction o; est supérieure a b2, les théorémes de compa-
raison classiques entrainent que les fonctions z; sont minorées pour ¢ > u par
b (on suppose b > 0).

Nous allons montrer que (— A(4%(?))) < (- z/(¢)) pour tout ¢ > u, ce
qui entrainera le théoréme cherché lorsque u tend vers — oo.

Lemme 4. Soit € un nombre réel positif strictement inférieur a by
alors on a pour k=1,.., n: '

n

(%) vi>u, Y —aA«@))< Y (—zY0) +eE).

n—-k+1 n-—k+1
“Donc (—MA*()) < (—z¥ (@) +¢).

Preuve. L’inégalité (*) est vérifié pour tout k pour les points # voisins de u

. ‘ . 1 Ly
puisque, pres de ce point on a A (¢) — t—— ~ 0(1), et qu’il en est de méme
pour chacune des fonctions z;(¢). Raisonnons par I’absurde et soit t le
premier temps strictement plus grand que u pour lequel 'une des n inégalités
(*) du lemme 4 n’est plus vérifiée. On a alors en ce point pour un certain k& < n:

I=n I=n

l(— M) = Y (—zi(t)+eg),

IMH

k

I =

i=n-k+1
et

i=n i=n

vk <k, X (=M@)< Y (-z()+¢).

i=n-k" +1 i=n—-k' +1
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La fonction x x2? étant convexe, les inégalités précédentes entrainent,
d’apres une inégalité de Karamata (cf. [BB, p. 30]),

i=n i=n

L )rs X @ -e)?
i=n—-k+1 i=n-k+1
au point T.
Donc, puisque les fonctions z; — € sont positives pour ¢ > u,

i=n i=n

) Y (o)< Y @a)r.

i=n—-k+1 i=n—-k+1
Or, puisque (\] + A7) < (z; +z7), on a

i=n i:n

(3) Y (-M@-Mom< Y (-zi)-z().

i=n—-k+1 i=n—-k+1

Des inégalités (2) et (3), il vient

i=n i=n

Y M@®> Y zZ@.

i=n—-k+1 i=n-k+1

Mais ceci contredit le choix de T comme premier temps pour lequel ’une des
inégalités (*) n’est pas vérifiée. []

Pour établir le théoréme 2, il nous suffit de faire tendre d’abord € vers 0
dans le lemme 4, puis u vers — oo.  []

Nous allons appliquer le théoréme 2 a une estimation des exposants de
“Lyapounov du flot ¢,. Pour cela, rappelons comment sont définis les
exposants positifs.

Fixons v un vecteur de T!'(M); la différentielle du flot ¢, envoie ’espace
instable au point v dans ’espace instable au point ¢,(v). Ces espaces s’iden-
tifient respectivement aux espaces tangents des horosphéres instables aux
points correspondants et nous les munirons de la métrique induite par la
-métrique de I’horosphere.

Soit J(¢) la restriction de la différentielle du flot ¢, a I’espace instable au
vecteur v: J(¢) est solution de I’équation de Jacobi le long de la géodésique
1o ¢,) (cf. [KI]). La matrice J'(¢£) o J~!(¢) est la solution positive A (¢) de
I’équation de Riccati le long de la géodésique m © ¢p,(v). Soit A,(¢) le vecteur
formé des logarithmes des valeurs propres de la matrice symétrique
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/J(t)*J(¢), ordonnées par ordre décroissant. Rappelons (cf. Proposition 1)
que ces valeurs propres sont des fonctions dérivables a droite et a gauche.
Notons alors A, (¢) la dérivée a droite du vecteur A, (7).

Nous utiliserons I’inégalité d’Amir-Moez (cf. [GL], qui est 1’analogue
multiplicatif de I’inégalité de Wielandt. Notons, pour une matrice non singu-
liere M, log(s(M)) le vecteur formé des logarithmes des valeurs propres de
|/ M* M rangées par ordre décroissant. L’inégalité d’ Amir-Moez affirme alors
que si A et B sont deux matrices non singuliéres, on a

log (s(AB)) — log(s(A4)) < log(s(B)) .

Soit 2 un nombre réel positif; appliquons I’inégalité aux matrices 4 et B telles
que A = J(t) et AB = J(¢ + h). En notant comme précédemment A (Z) la solu-
tion positive et partout définie de I’équation de Riccati le long de la géodésique
n o ¢, (), on déduit a I'aide d’un développement limité comme dans la
démonstration de la proposition 1

(4) A, (@) <MA@) .
On sait que le vecteur A des exposants de Lyapounov positifs est la limite

1 .
quand ¢ tend vers oo des vecteurs —A,(f), qui existe pour presque tout
t

vecteur v (cf. [L]).
Donc le théoreme ergodique de Birkhoff et I’inégalité (4) entrainent

(%) A< (s Ai(A@))dv) .
TH(M)
Du théoréme 2, on déduit:

COROLLAIRE 5. Le vecteur A vérifie

-~ A<(- S zi(v)dv) .

TH(M)

En particulier, I’entropie h, de la mesure de Liouville vérifie

(%) ) j z)d .
= ran

Preuve. Pour justifier I’énoncé précédent, remarquons que, sur une méme
orbite, la valeur prise par la fonction z;(f) en un point ne dépend que de ce
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point et non de I’origine choisie sur I’orbite; elle définit donc une fonction sur
le fibré unitaire 7'(M) que nous avons notée v — z;(v). D’autre part en tant
que limite de fonctions continues (par construction), la fonction z;(v) est
mesurable; étant bornée, elle est aussi intégrable.

Ceci €tant dit, la premiére partie du corollaire 5 découle de ’inégalité (5)
et du théoréme 2; 'inégalité () découle de la formule de Pesin & = ), A
et de la premiére partie du corollaire. [

Remarquons que ’on a

o) )+ 22

zi(v) zi(v)

or, I’intégrale sur le fibré unitaire du dernier terme de 1’égalité précédente est
nulle, d’aprés le théoréme ergodique de Birkhoff par exemple, puisque la
fonction logz; est bornée. Donc,

oi(v)

(6) § zi(L)dA = s ik .
; TH(M)

THM) Zi(U)

L’inégalité de Cauchy-Schwarz et (6) donnent finalement

j /6;(V)dN < g zi(v)dn .
T1(M)

T1(M)

Donc I’inégalité concernant I’entropie du corollaire 5 améliore 1’inégalité
de Osserman-Sarnak:

) By > j ZI //6,0)d\ = j tr()/ = R@))d\ .
- TH(M)

On a en fait:

COROLLAIRE 6. Le vecteur A vérifie — A= (— $|/ o; (V) dv).

L’inégalité (7), d’abord établie par R. Osserman et P. Sarnak pour une
variété M de courbure sectionnelle strictement négative (JOS]), a ensuite été
généralisée au cas des variétés sans points conjugués par W. Ballman et
Wojtkowsky ([BW]). On peut se demander s’il existe un analogue du
‘théoréme 2 dans ce cas.

‘ D’autre part, les démonstrations contenues dans [OS] et [BW] de I’inégalité
(7), identifient les variétés riemanniennes pour lesquelles on a égalité dans la
formule (7): ce sont les espaces localement symétriques de courbure négative.
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On peut se demander s’il en est de méme pour I’inégalité (**) du corol-
laire 5, lorsque la dimension de M est supérieure ou €gale a 3. On remarque
facilement que 1’égalité dans le cas de la formule du corollaire 5 entraine que
les opérateurs A (v) et R(v) commutent pour tout vecteur v, c€ qui semble tres
restrictif sur la métrique en dimension supérieure ou égale a 3 (cf. [C] pour
un probléme connexe).

Remarque. Le point de départ de cette note fut une conjecture d’Osser-
man, contenue dans [C] et qui nous semble encore tout aussi intéressante:
I’entropie A, vérifie la majoration:

< X s s(w)dh .
i=1 TI(M)
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