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p f H-j
UNE REMARQUE SUR LE SPECTRE DES SOLUTIONS MATRICIELLES

Soit M une variété compacte de dimension n + 1, munie d'une métrique
riemannienne de courbure strictement négative. Le flot géodésique ((>, de cette

métrique laisse invariante la mesure de Liouville normalisée sur le fibré unitaire

mesure que nous noterons X. Nous nous intéressons dans cette note
à estimer l'entropie de la mesure X pour le flot $t: nous déduirons d'un
théorème de comparaison pour l'équation de Riccati (Théorème 2) une

inégalité vérifiée par les exposants de Lyapounov du flot géodésique qui
contient comme cas particulier une nouvelle minoration de l'entropie de la
mesure X (Corollaire 5).

Rappelons d'abord brièvement la géométrie du revêtement universel M de

M; c'est une variété difféomorphe à l'espace euclidien qui se compactifie en

une boule topologique par l'ajout d'une sphère à l'infini (cf. [Kl]). A un
vecteur u de Tl(M) sont associées deux sous-variétés. L'une, dite stable, est

formée des vecteurs dont l'orbite par le flot géodésique est asymptote à

celle de u lorsque t tend vers + oo; l'autre, dite instable, est caractérisée par
la même propriété lorsque t tend vers - oo. Chacune d'elles est difféomorphe
à l'espace R" et se projette difféomorphiquement par l'application
7i : T1 (M) - M sur la variété M.

On notera Hv, l'image de la sous-variété instable du point u: c'est donc
une hypersurface passant par le point n(u), orthogonale au vecteur u en ce
point. Sa géométrie au point n (u) est décrite par la deuxième forme fondamentale,

qui mesure la dérivée de la normale unitaire le long de Hv, et nous
choisirons la normale pointant dans la même direction que u. C'est un
endomorphisme symétrique de Tl(M) dans lui-même; pour l'horosphère
instable, cet endomorphisme Av est strictement positif, alors qu'il est négatif
pour l'horosphère stable.

Une formule de Pesin (cf. [P]) exprime l'entropie hx de la mesure de
Liouville de la manière suivante:
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Le terme trAv, trace de l'endomorphisme A0 s'interprète comme la courbure
moyenne de l'horosphère Hv au point 7i(u).

Rappelons que la fonction v ^ Av est hölderienne; donc le théorème
ergodique de Birkhoff nous permet de remplacer l'intégrale spatiale dans la
formule de Pesin par une intégrale le long de presque toute géodésique.

Fixons un vecteur v e Tl(M). Le long de l'orbite tyfu) l'endo-
morphisme A^^, que nous noterons A(t) est solution de l'équation de

Riccati:

A'(t) + A\t) + R(t) 0

Dans la formule précédente Aft) est la dérivée covariante de A(t) le long
de la géodésique t h* n o et R(t) est l'opérateur de courbure dans la

direction du vecteur 0,(ü). Dans une base parallèle de l'espace orthogonal du

vecteur le long de l'orbite t^fyfu), les opérateurs A(t) et R(t) se

représentent par des matrices à n lignes et n colonnes; dans ces coordonnées

la dérivation covariante n'est autre que la dérivation usuelle des matrices.

Dans ce qui suit, nous supposerons que la courbure sectionnelle de la

variété M est strictement négative et donc que l'opérateur R(t) a un spectre

compris entre deux constantes strictement négatives - a2, - b2.

Le résultat suivant devrait être bien connu, mais n'en ayant pas trouvé de

référence, nous en donnerons une démonstration.

Proposition 1. Soit t^R(t) une fonction C1 d'un intervalle de

R à valeurs dans les matrices symétriques n x n; notons oft) la i-ème

valeur propre par ordre décroissant de R(t). Alors, la fonction t k* oft)
est une fonction Lipschitz, dérivable à droite et à gauche en tout point; de plus
la constante Lipschitz de ot ne dépend que de la norme Cl de la

fonction R.

Preuve. Il nous suffit de montrer que pour tout k, la somme des k plus

grandes valeurs propres de R(t) est une fonction Lipschitz comme dans

l'énoncé de l'affirmation précédente.

Rappelons la relation d'ordre suivante sur Rn, bien adaptée à l'étude des

valeurs propres des matrices symétriques (cf. [GL]). Soient X (xux2, xn)

et Y Oi, y2, yn) deux vecteurs de R". Notons X (xi,..., xn) et

Y (y...,yn) les vecteurs obtenus à partir de X et de Y en réordonnant
leurs coordonnées respectives par ordre décroissant.

Nous écrirons X < F si et seulement si on a, Vk ^ n:
i k i k

S Xi < X yt.
i=1 1=1



ÉQUATION DE RICCATI 5

On notera en outre X < Y si X < Y et si

i - n i n

E x, E y>
i 1 / 1

Si A est une matrice symétrique réelle, on notera g (A) le vecteur de Rn

obtenu en rangeant par ordre décroissant les valeurs propres ct{A) de la

matrice A.
On a alors, pour deux matrices symétriques S et T, l'inégalité suivante de

Wielandt (cf. [GL]):

(1) a(S+T)~ g(T)< G (S)

Ecrivons un développement limité à l'ordre 1 de R(t + h) au point t:

R(t + h) R(t) + hR'{t) + hot(h)

où la matrice o,(/z) tend vers 0 uniformément en t lorsque h tend vers 0.

Appliquons la relation (1) aux matrices S et T vérifiant S + T R(t + h)
et T R(t) + hR'(t), il vient:

g(R(î + h)) - G(R(t) + hR'{t))< hG(ot(h))

Donc les vecteurs - (o(jR(t + h)) — G(R(t))) ont les mêmes valeurs d'adhé-
h

rence dans R" lorsque h tend vers 0 que les vecteurs - (o(i?(0 + hR'(t))
h

~ o(R(0)).

Or les coordonnées de la fonction vectorielle /? h> g(R(î) + hR'{t)) sont
des différences de fonctions convexes (ceci découle de (1)). Donc, la limite de

dC
~h

+ ~ a(Â(0» existe à droite et à gauche en tout point.

De plus, par convexité, la £-ième coordonnée de cette dérivée est bornée en
termes des vecteurs g(R(t) + R'(t)) - G(R(t)) et g(R(î) - R'(t)) - G(R(t)).

Ceci termine la démonstration de la proposition 1.

Notons o(- R(t)) (ai(t), G2(t), o„(0). Pour étudier une matrice
A(t), solution de l'équation de Riccati, nous allons comparer son spectre aux
solutions des n équations scalaires:

z'i (t) + z](t) Oi(t)

pour i 1, n.
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Puisque la fonction oft) est strictement positive et bornée, il est connu
que cette équation possède deux solutions définies sur toute la droite; l'une
de ces solutions est strictement positive, l'autre est strictement négative. Nous
noterons z, la solution positive.

Les théorèmes de comparaison classiques (le lemme de Gronvall) entraînent
que, en tout point de R, on a: Zi ^ Z/-i de sorte que le vecteur (z,(0) a ses

coordonnées arrangées par ordre décroissant.
Soit X{A{t)) X2(t), Xn(t)) le spectre, arrangé par ordre

décroissant d'une solution A(t) de l'équation A'(t) + A2{t) + R(t) 0,
définie sur un intervalle de R. Rappelons que, puisque la matrice R(t) est

symétrique et différentiable comme fonction de t, la matrice A(t) est

symétrique, par le théorème d'unicité des solutions d'une équation
différentielle.

On a alors:

Théorème 2. On a, avec les notations précédentes: (- Xft))
:< (- Zi(t)).

Preuve. La solution A(t) est C1 en tant que fonction de t\ d'après la

proposition 1, la fonction Xft) possède donc, pour tout /, une dérivée à

gauche en tout point. Notons X- (t) cette dérivée au point t.

Lemme 3. Soit A(t) une solution de l'équation de Riccati définie sur
un intervalle I de R de spectre (Xft)). Pour tout tel, on a: X- (t)
+ < (o/(0)-

Preuve. Soit h un nombre strictement négatif; appliquons la relation (1)

aux matrices S et T telles que S + T A(t + h), T A{t) - hA2(t). On a,
dès que h est suffisamment petit: o(A(t) - hA2(t)) (Xft) - hX](t)). Donc,

(Xft + h) - Ut) + hX%t))< X(A(t + h) - A{t) + hA2(t))

On obtient le Lemme 3 en faisant tendre h vers 0, après avoir divisé par
h.

Remarque. Le lemme est encore valable, avec la même démonstration, si

le vecteur des dérivées à gauche de (Xft)) est remplacé par le vecteur des

dérivées à droite. En effet: X < Y est équivalent à — X < - Y.

Nous allons appliquer le lemme ci-dessus aux solutions de l'équation de

Riccati qui nous intéressent, c'est-à-dire à celles qui sont définies sur toute la

droite.
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Soit u un nombre réel. On sait, puisque la métrique étudiée est sans point

conjugué, que la solution de l'équation de Jacobi J" (t) + R(t)J(t) 0 telle

que J(u) 0 et /' (u) Id est non singulière pour u non nul. La matrice

J'(t)J-\t) Au(t) est alors solution de l'équation de Riccati sur la demi-

droite t > u. Il est connu d'après [G] que

A(t)= lim Au(t)
U -» — oo

La solution Au(t) est indéfinie au point u et équivalente à Id près de
t - u

ce point.
On peut construire de la même façon chaque solution scalaire zz(0* à

partir de la solution z"(0> équivalente à près du point u et positive pour
t - u

t > u.

Puisque chaque fonction o, est supérieure à b2, les théorèmes de comparaison

classiques entraînent que les fonctions z" sont minorées pour t > u par
b (on suppose b > 0).

Nous allons montrer que (- À,(^4"(0)) < (- z"(0) P°ur t°ut t > u, ce

qui entraînera le théorème cherché lorsque u tend vers - oo.

Lemme 4. Soit s un nombre réel positif strictement inférieur à b;
alors on a pour k — 1, n:

(*) v? > u,Ê- < £ (- z"(t) + s)
n - k + l n - k + 1

Donc (- X(Au(t)) <(- z-(0 + s).

Preuve. L'inégalité (*) est vérifié pour tout k pour les points t voisins de u

puisque, près de ce point on a Vt{t) o(l), et qu'il en est de même
t - u

pour chacune des fonctions z"(t). Raisonnons par l'absurde et soit t le
premier temps strictement plus grand que u pour lequel l'une des n inégalités
(*) du lemme 4 n'est plus vérifiée. On a alors en ce point pour un certain k ^ n:

S (-2wCO)= I (-Z-(t) + B),
i n — k + \ i - n - k + 1

et

vAr' < k, t (-^(t))< 't" (-z?(T) + e)
I n - k' + 1 i n - k' + 1
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La fonction x^ x2 étant convexe, les inégalités précédentes entraînent,
d'après une inégalité de Karamata (cf. [BB, p. 30]),

'ï(^)2<fe,"-e)2
i n - k + 1 / n — k + 1

au point x.

Donc, puisque les fonctions Zi - e sont positives pour t > u,

(2) 'z (w)2^ 'z ferw)2.
i n - k + 1 | n - k + 1

Or, puisque (l' + if) < (z,' + zf), on a

0) 'z 'ï" (-z;(T)-z2(t).
/ « - A: + 1 / n - k # 1

Des inégalités (2) et (3), il vient

'ï" Z',(T).
i n - k + 1 i n - k + 1

Mais ceci contredit le choix de x comme premier temps pour lequel l'une des

inégalités (*) n'est pas vérifiée.

Pour établir le théorème 2, il nous suffit de faire tendre d'abord s vers 0

dans le lemme 4, puis u vers - oo.

Nous allons appliquer le théorème 2 à une estimation des exposants de

Lyapounov du flot (|),. Pour cela, rappelons comment sont définis les

exposants positifs.
Fixons v un vecteur de TX(M)\ la différentielle du flot <\>t envoie l'espace

instable au point u dans l'espace instable au point 0*00. Ces espaces s'identifient

respectivement aux espaces tangents des horosphères instables aux
points correspondants et nous les munirons de la métrique induite par la

métrique de l'horosphère.
Soit J(t) la restriction de la différentielle du flot à l'espace instable au

vecteur v:J(t) est solution de l'équation de Jacobi le long de la géodésique

7i o (j),^) (cf. [Kl]). La matrice J'(t) o J~l{t) est la solution positive A(t) de

l'équation de Riccati le long de la géodésique n o ()>,(£;). Soit A„(t) le vecteur
formé des logarithmes des valeurs propres de la matrice symétrique
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1/7(0*7(0, ordonnées par ordre décroissant. Rappelons (cf. Proposition 1)

que ces valeurs propres sont des fonctions dérivables à droite et à gauche.

Notons alors Aru(t) la dérivée à droite du vecteur Av(t).
Nous utiliserons l'inégalité d'Amir-Moez (cf. [GL], qui est l'analogue

multiplicatif de l'inégalité de Wielandt. Notons, pour une matrice non singulière

M, log (s1 (M)) le vecteur formé des logarithmes des valeurs propres de

]/M*M rangées par ordre décroissant. L'inégalité d'Amir-Moez affirme alors

que si A et B sont deux matrices non singulières, on a

Soit h un nombre réel positif; appliquons l'inégalité aux matrices A et B telles

que A J(t) et AB J(t + h). En notant comme précédemment A (t) la solution

positive et partout définie de l'équation de Riccati le long de la géodésique
7i o on déduit à l'aide d'un développement limité comme dans la
démonstration de la proposition 1

On sait que le vecteur A des exposants de Lyapounov positifs est la limite

quand t tend vers oo des vecteurs ^-Av(t), qui existe pour presque tout

vecteur v (cf. [L]).
Donc le théorème ergodique de Birkhoff et l'inégalité (4) entraînent

log(s(AB)) - log (5(^4)) -< log (s(.8))

(4) A;(O<X(ACO)

(5) A<(\ Xi(A(u))du)
ri (M)

Du théorème 2, on déduit:

Corollaire 5. Le vecteur A vérifie

— A<(-| Zi(v)do)
r1 (M)

En particulier, l'entropie hx de la mesure de Liouville vérifie

i n n

J ri (M)

Preuve. Pour justifier l'énoncé précédent, remarquons que, sur une même
orbite, la valeur prise par la fonction z,(t) en un point ne dépend que de ce
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point et non de l'origine choisie sur l'orbite; elle définit donc une fonction sur
le fibré unitaire Tl(M) que nous avons notée v ^ Zi(y). D'autre part en tant
que limite de fonctions continues (par construction), la fonction zfu) est

mesurable; étant bornée, elle est aussi intégrable.
Ceci étant dit, la première partie du corollaire 5 découle de l'inégalité (5)

et du théorème 2; l'inégalité (**) découle de la formule de Pesin h\ £ f.A;

et de la première partie du corollaire.

Remarquons que l'on a

<*/(")
x z\{v)

—— z:(v)+ —— ;
Ziip)

or, l'intégrale sur le fibré unitaire du dernier terme de l'égalité précédente est

nulle, d'après le théorème ergodique de Birkhoff par exemple, puisque la

fonction log Zi est bornée. Donc,

(6) I
Zi(u)dX I dk

J TX{M) (!>)

L'inégalité de Cauchy-Schwarz et (6) donnent finalement

I 1/oi(v)dk ^ 1 Zi(u)dX
J Ti(M) J THM)

Donc l'inégalité concernant l'entropie du corollaire 5 améliore l'inégalité
de Osserman-Sarnak :

(7) hx ^ I E 1/oi(u)dk I tr{]/- R(p))dk
J J tHM)

On a en fait:

Corollaire 6. Le vecteur A vérifie -A< (- j]/oi(v)dv).

L'inégalité (7), d'abord établie par R. Osserman et P. Sarnak pour une

variété M de courbure sectionnelle strictement négative ([OS]), a ensuite été

généralisée au cas des variétés sans points conjugués par W. Ballman et

Wojtkowsky ([BW]). On peut se demander s'il existe un analogue du

théorème 2 dans ce cas.

D'autre part, les démonstrations contenues dans [OS] et [BW] de l'inégalité
(7), identifient les variétés riemanniennes pour lesquelles on a égalité dans la

formule (7): ce sont les espaces localement symétriques de courbure négative.
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On peut se demander s'il en est de même pour l'inégalité (**) du corollaire

5, lorsque la dimension de M est supérieure ou égale à 3. On remarque

facilement que l'égalité dans le cas de la formule du corollaire 5 entraîne que

les opérateurs A(u) et R(o) commutent pour tout vecteur v, ce qui semble très

restrictif sur la métrique en dimension supérieure ou égale à 3 (cf. [C] pour

un problème connexe).

Remarque. Le point de départ de cette note fut une conjecture d'Osser-

man, contenue dans [C] et qui nous semble encore tout aussi intéressante:

l'entropie hx vérifie la majoration:
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