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COMPLEX GROWTH SERIES OF COXETER SYSTEMS

by Luis PARIS!)

1. INTRODUCTION

Let (W, S) be a Coxeter system (see [1] for the definitions). Throughout
this paper the generating set S of W is assumed to be finite. S determines a
length on W called word length. 1t is defined by

I(w) = Is(w) = min{r|w=s,...5,5 € S},
for w € W. The growth series of W with respect to S is the formal series

Ws(t)y = L t'™.
we W
For a subset X C S, we denote by Wy the subgroup of W generated by X;
the system (Wy, X) is still a Coxeter system.

With a Coxeter system (W, S) one can associate a simplicial complex
(W, S), called the Coxeter complex. This was introduced by Tits in [5] and
is an essential ingredient of the theory of buildings (see [2] and [6]).

In this paper we introduce a new formal series Wi(¢, £;), in two
variables, which will be called the complex growth series of (W, S), and is
determined from the complex X (W, S). More precisely,

Ws(t, 1) = Z tllf(co,F)t;odim(F) ’
F

where the sum is over all the faces F of (W, S) (here we assume the empty
set to be a face of £(W, S) of dimension — 1), and d(C,, F) is the distance
between the fundamental chamber C, of (W, S) and the face F.

The notions of Coxeter complex, chamber, face and fundamental chamber
will be recalled in Section 2.

MAIN THEOREM. Let (W,S) be a Coxeter system. Then

Ws(t)
(1.1 Wt t,) = x| Vs
) s, ) X§sz Wx(t))

.

1) Supported by the FNSRS (Swiss national Foundation).
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Solomon proved in [4] that, if (W, S) is a finite Coxeter system (i.e. W is
finite), then

| Ws(t)
(1.2 — DXl —
(12 X%S( ) Wx(t)

Ll
where

m = max [(w) .
we W

Later, in [1, §4.1, exercise 26], Bourbaki proved a similar formula for an
infinite system (W, S); in that case,

Ws(t)
1.3 _ylxl _ 0
o= L OV

“Several results on growth series of Coxeter groups are obtained by induction
on | S| using (1.2) and (1.3). We refer to [3] for an exposition on those two
equalities and their applications.

An immediate corollary of (1.1), (1.2) and (1.3) is: if (W, S) is a finite
Coxeter system, then

(1.4) Ws(t,, — 1) =17,

m being the maximal length in W; and if (W, S) is an infinite Coxeter system,
then

(1.5) W(t,, —1) =0 .

In fact, these two equalities (1.4) and (1.5) can and will be proved
independently of the formulas (1.1), (1.2) and (1.3) (Proposition 2).

As an illustration of the Main Theorem, let us give two explicit examples.
1) Assume
W= <s,8|ss=si=(5)=1>

- to be a Coxeter group of type A,. The geometric realisation of X(W,S) is an
- hexagon. We have

Wsti,b)=0+t) A+t +) + 20+, +t)t + 15,
and

| Wisi,sp@) = 1 +1) A +14+1%),

Wisn(t) = Wisy(0) = 1 + 4,

Wu(t) = 1.
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Thus the equality (1.1) holds in that case.

2) Assume
W= <s,8,8|s=s2=5=(@5)° = (:5)=()"=1>

to be a Coxeter group of type A,. The geometric realisation of Z(W,S) is a
plane. We have
1+8)(A+t+18) 1+4+8 t
2
(1-#) (1 -1]) (1-1) (1=t
1
+3 =
(1-1) Q-1

Ws(ty, 1) =

2+,

and

1+ A +t+12)
1-1) Q-1
Wis, (@) = Wis, () = Wiy, s (@) = (L+1) (1 +1+12),
Wiy () = Wiy () = Wiy (1)) = 1 + 1,
We(t) = 1.

Ws(t) =

Thus the equality (1.1) holds in that case.

In Section 2 we will recall some definitions in the theory of Coxeter
complexes, we will define the complex growth series of a Coxeter system
(W,S), we will prove that Ws(t,0) = Ws(t,) and Ws(0, ;) = (1 + )15
(Proposition 1), we will prove the equalities (1.4) and (1.5) (Proposition 2),
and we will prove the Main Theorem.

2. COMPLEX GROWTH SERIES

We assume the reader to be familiar with the notions of simplicial complex,
chamber complex, adjacency between two chambers, gallery and labelling. We
refer to [2, Chap. I, Appendix] for a good exposition of these notions.

Let (W, S) be a Coxeter system. A special coset of (W, S) is a coset wWy,
with w € W and X C S. We denote by £ = (W, S) the poset of all special
cosets, ordered by the reverse inclusion; B< A in X if B2 A in W. The
poset X is a labelled chamber simplicial complex (see [2, Chap. III, §1]).

A chamber of T is a singleton {w} with w € W. A vertex of T is a special
coset wWS_{S} with w € Wand s € S. The face of ¥ of dimension — 1 is the
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