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COMPLEX GROWTH SERIES OF COXETER SYSTEMS

by Luis PARIS!)

1. INTRODUCTION

Let (W, S) be a Coxeter system (see [1] for the definitions). Throughout
this paper the generating set S of W is assumed to be finite. S determines a
length on W called word length. 1t is defined by

I(w) = Is(w) = min{r|w=s,...5,5 € S},
for w € W. The growth series of W with respect to S is the formal series

Ws(t)y = L t'™.
we W
For a subset X C S, we denote by Wy the subgroup of W generated by X;
the system (Wy, X) is still a Coxeter system.

With a Coxeter system (W, S) one can associate a simplicial complex
(W, S), called the Coxeter complex. This was introduced by Tits in [5] and
is an essential ingredient of the theory of buildings (see [2] and [6]).

In this paper we introduce a new formal series Wi(¢, £;), in two
variables, which will be called the complex growth series of (W, S), and is
determined from the complex X (W, S). More precisely,

Ws(t, 1) = Z tllf(co,F)t;odim(F) ’
F

where the sum is over all the faces F of (W, S) (here we assume the empty
set to be a face of £(W, S) of dimension — 1), and d(C,, F) is the distance
between the fundamental chamber C, of (W, S) and the face F.

The notions of Coxeter complex, chamber, face and fundamental chamber
will be recalled in Section 2.

MAIN THEOREM. Let (W,S) be a Coxeter system. Then

Ws(t)
(1.1 Wt t,) = x| Vs
) s, ) X§sz Wx(t))

.

1) Supported by the FNSRS (Swiss national Foundation).



96 L. PARIS

Solomon proved in [4] that, if (W, S) is a finite Coxeter system (i.e. W is
finite), then

| Ws(t)
(1.2 — DXl —
(12 X%S( ) Wx(t)

Ll
where

m = max [(w) .
we W

Later, in [1, §4.1, exercise 26], Bourbaki proved a similar formula for an
infinite system (W, S); in that case,

Ws(t)
1.3 _ylxl _ 0
o= L OV

“Several results on growth series of Coxeter groups are obtained by induction
on | S| using (1.2) and (1.3). We refer to [3] for an exposition on those two
equalities and their applications.

An immediate corollary of (1.1), (1.2) and (1.3) is: if (W, S) is a finite
Coxeter system, then

(1.4) Ws(t,, — 1) =17,

m being the maximal length in W; and if (W, S) is an infinite Coxeter system,
then

(1.5) W(t,, —1) =0 .

In fact, these two equalities (1.4) and (1.5) can and will be proved
independently of the formulas (1.1), (1.2) and (1.3) (Proposition 2).

As an illustration of the Main Theorem, let us give two explicit examples.
1) Assume
W= <s,8|ss=si=(5)=1>

- to be a Coxeter group of type A,. The geometric realisation of X(W,S) is an
- hexagon. We have

Wsti,b)=0+t) A+t +) + 20+, +t)t + 15,
and

| Wisi,sp@) = 1 +1) A +14+1%),

Wisn(t) = Wisy(0) = 1 + 4,

Wu(t) = 1.
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Thus the equality (1.1) holds in that case.

2) Assume
W= <s,8,8|s=s2=5=(@5)° = (:5)=()"=1>

to be a Coxeter group of type A,. The geometric realisation of Z(W,S) is a
plane. We have
1+8)(A+t+18) 1+4+8 t
2
(1-#) (1 -1]) (1-1) (1=t
1
+3 =
(1-1) Q-1

Ws(ty, 1) =

2+,

and

1+ A +t+12)
1-1) Q-1
Wis, (@) = Wis, () = Wiy, s (@) = (L+1) (1 +1+12),
Wiy () = Wiy () = Wiy (1)) = 1 + 1,
We(t) = 1.

Ws(t) =

Thus the equality (1.1) holds in that case.

In Section 2 we will recall some definitions in the theory of Coxeter
complexes, we will define the complex growth series of a Coxeter system
(W,S), we will prove that Ws(t,0) = Ws(t,) and Ws(0, ;) = (1 + )15
(Proposition 1), we will prove the equalities (1.4) and (1.5) (Proposition 2),
and we will prove the Main Theorem.

2. COMPLEX GROWTH SERIES

We assume the reader to be familiar with the notions of simplicial complex,
chamber complex, adjacency between two chambers, gallery and labelling. We
refer to [2, Chap. I, Appendix] for a good exposition of these notions.

Let (W, S) be a Coxeter system. A special coset of (W, S) is a coset wWy,
with w € W and X C S. We denote by £ = (W, S) the poset of all special
cosets, ordered by the reverse inclusion; B< A in X if B2 A in W. The
poset X is a labelled chamber simplicial complex (see [2, Chap. III, §1]).

A chamber of T is a singleton {w} with w € W. A vertex of T is a special
coset wWS_{S} with w € Wand s € S. The face of ¥ of dimension — 1 is the
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coset 1. W = W (this face has 0 vertices). The fundamental chamber of X
is {1}.
The Coxeter group W naturally acts on X by

2.1) wWx) = (W) Wy ,

where w € W, and vWy is a face of T (i.e. a special coset).

The map which associates to a face F = wWy the subset A(F) = S — X of
S determines a labelling on X, called the canonical labeling of X, where A(F)
is the type of a face F.

Two chambers {w} # {w’} are adjacent if they have a common codimen-
sion 1 face, namely, if there exists an s € S such that w’ = ws. A gallery of
length d is a sequence {C;}¢_, of d + 1 chambers such that C; and C;,, are
adjacent fori = 0, 1, ..., d — 1. In fact, to give a gallery {C,-}fzo is equivalent
to give a source chamber C, and a sequence s;, ..., s; of elements of S; the
equivalence is given by C; = s;...55(Cy). A gallery {C,}?LI joining two
chambers C, and Cj is called minimal if there is no gallery joining C, and C;,
. with a smaller length.

The distance d(C, D) between two chambers C and D is the length of a
minimal gallery joining C and D. We can easily see that, if C = {w} and
D = {v}, then

(2.2) d(C,D) = Il(w1v).

The distance d(C, F) between a chamber C and a face F of X is
(2.3) d(C, F) = min {d(C, D) | D a chamber having F as face} .
As in (2.2), if C = {w} and F = vWyx, then

(2.4) d(C,F) = min{l(u) |u e w- oWy} .

The complex growth series of a Coxeter system (W, S) is the formal series
in two variables

(2.5) WS(t1 , tz) — E ttli(Co,F)t;odim(F) ’
F

where the sum is over all the faces F of X, and where C, = {1} is the
fundamental chamber.

Before stating and proving Propositions 1 and 2 and the Main Theorem,
~ we are going to state two known results (Lemmas 1 and 2). A proof of
- Lemma 1 can be found either in [1, §4.1, exercise 3] or in [3, Lemma 1]. A
~ proof of Lemma 2 can be found in [2, Chap. IV, §6].
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Let X C S be a subset and let v € W. The element v is called X-minimal
if v is of minimal length among the elements of vWy.

LEMMA 1. Let X CS be a subset and let v e W be an X-minimal
element of W. Then

i) v is the unique X-minimal element of vVWyx,

i) for every w=vuecoWy, with u=v-'we Wy, one has
I(w) = 1) + ().

For an integer d > 0, we denote by X, the subcomplex of ¥ = (W, S)
generated by the chambers C of ¥ at distance < d of Cy = {1}.

Zd_—‘UF,
F

where the union is over all the faces F of ¥ such that d(Cy, F) < d. We
denote by | X, | the geometric realization of X,.

LEMMA 2. 1) Let (W,S) be a finite Coxeter system. Set
m = max,.wl(w). Then |Zq| is contractible if d<m, and |%| is
homotopic to the sphere S|S|-1 of dimension |S|— 1 if d > m.

i) Let (W,S) be an infinite Coxeter system. Then lZdl is
contractible.

PROPOSITION 1. Let (W,S) be a Coxeter system. Then

(2.6) Ws(t,,0) = Ws(t)) and
(2.7) Ws(0, ) = 1+ 1)I51.
Proof.

Ws(t1,0) = ), 1P,
F

where the sum is over all the faces of X of codimension 0, i.e. over all the
chambers of X. Furthermore, if F=C={w}, then, by (2.2),
d(Cy, F) = [(w). It follows that

Ws(t,, 0) = Z tll(w) = Ws(t)) .

we W

Now,

Ws©,8) =), fEOdimm 3
F
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where the sum is over all the faces F of ¥ at distance 0 of C,, i.e. over all
S

the faces of C,. Since C, is an | S I — 1 dimensional simplex, it has (I , |)
[

faces of dimension i (where i = 0, 1, ...,| S|). It follows that

15|

Ws(0,5) = ), ("Sj') th=>0+p)s. O
l

i=0

PROPOSITION 2. i) Let (W,S) be a finite Coxeter system. Then
(2.8) Ws(t, — 1) =1,
where m is the maximal length in W.

i1) Let (W,S) be an infinite Coxeter system. Then
(2.9) Ws(t, —1)=0.

Proof. Recall that ¥, is the subcomplex of X generated by the chambers
of T at distance < d of C,, and that | £, | is the geometric realization of X,.
We denote by E(] £,]|) the Euler characteristic of | £, |. It is well known that
E(] Z4|) can be computed as follows:

(=DISE(Z ) = (=Dlst Y (= pime

d(Co, F) < d
F+W
- E (_ l)codim(F) .
d(CO,F) <d
F+W

On the other hand, we have
Ws(ty, =1) = L 107 (= 1)eodim®
F
_ Z Z (— 1)codim(F) l“l".
d=0\d(Cy,F)=d
~ Thus
- (2.10) (= DIEYE(Zq ) — E(| Za-1 )
1s the coefficient of t‘f in Ws(t;, —1) ford > 1, and

@1y (= )ISF1E(| T |) + (= D)S]
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is the coefficient of z‘? in Ws(t;, —1). Lemma 2 implies that, if (W, S) is a
finite Coxeter system, then

E|Z|)— 1 if d<m,
(1 2al) = 1+ (=it if dzm,

where m is the maximal length in W; and if (W, S) is an infinite Coxeter
system, then

E(|Z;)=1,

for all d > 0. Replacing E(| Z4|) by its value in (2.10) and (2.11), we obtain
the equalities (2.8) and (2.9). [

MAIN THEOREM. Let (W,S) be a Coxeter system. Then

Ws(t)
2.12 Wot,, t,) = Ax1 50
(2.12) s(ty, 1) ngs 5 W)

Proof. Recall that the map which associates to a face F = wWjy the
subset A(F) = § — X of S determines a labelling on X, where A(F) is the type
of the face F. Clearly, if A(F) = Y, then dim(F) =| Y |- 1 and codim (F)
=|S|-|Y|=|8~ Y|. Therefore

]
YcSs Fe Fy
where .7y is the set of faces of X of type Y. Let us prove
Ws(t
(2.14) Y dCo ) _ s(t) ’
Fe 7y Ws_y(t)

for every Y C S. The equalities (2.13) and (2.14) clearly imply (2.12).

Let X =S — Y. Recall that an element v € W is X-minimal if it is of
minimal length in vWx. Every face F € %y can be written F = oW, with
v X-minimal (take any element of minimal length in F). By (2.4), we have

d(Co, F) = 1(v) .

Lemma 1 shows that, for every F € %y, there is an unique X-minimal
element v in F. Therefore

(2.15) E tcli(Co,F)z y tll(u),

Fe %y ve Ay
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where Ay is the set of all the X-minimal elements of W. Finally, Lemma 1
‘shows

Ws(t) = ), ti(w)

we W

=Y Y £ (Lemma 1.i)

veAywevWy

Y Y A0 (Lemma 1.ii)

veAy ue Wy

= ( ), ti“”) Wx(t)) .

veAy

This and (2.15) imply (2.14) [
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