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FONCTION DE WEIERSTRASS 91

La non-dérivabilité de la fonction / en tout point x est une conséquence

simple de ce théorème. L'inégalité en conclusion empêche les quotients
différentiels au point x d'être bornés. Nous présentons deux démonstrations
de ce théorème. La première démonstration, élémentaire, n'est cependant
valide que pour la fonction de Weierstrass C(x) et que si b est un entier impair.
La seconde démonstration relativement courte et un peu magique considère le

cas général où b est un nombre réel supérieur à 1 /a.

2. Cas où b est un entier impair

Soient m ^ 1 un entier, x e R et k un entier tel que | bmx/(2n) - k |

^ 1/2. Posons t 2%k/bm et h %/(2bm). On a alors

m - 1 m - 1

C{t - h) Y a"cos ~ h) » + h) Y a"cos bn(t + h)
n 0 n 0

m - 1

C(0 - Y a"cos bnt + am/{\ - a)
n 0

Par suite

2C(t) - C(t -h) - C(t+ h) A + 2am/(l - a)

avec

m - 1 m - 1

A Y 2an(cosbnt) (1 - cosbnh) ^ - Y 2an(l - cosbnh)
« 0 n 0

Comme 1 - cos ß ^ ß2/2, on obtient donc:

m - 1

•<4 ^ - S a"(b"h)2- /î2{(cè2)m- l}/(aè2- 1)
n 0

> - h2(ab2)m/(ab2- 1)

Finalement on a

2C(0 - C(f + A) - C(t ~h)>
où c 2/(1 — a) — 7i2/ \A(cib2 — 1)] est positif. En effet on a

c {8(aè2 - 1) - tc2(1 - a4(1- a) (ab2 - 1)}

et comme le dénominateur est toujours positif, c est du même signe que le
numérateur. On a ab >1, d'où S,ab2+ n2a > 8b +n2/b.Pourb entier plus



92 A. BAOUCHE ET S. DUBUC

grand que 1, on a 8b + n2/b > 8 + n2, car l'équation 8b2 - (8 + n2)b + n2

0 a deux racines b 1 et b n2/8.
Par ailleurs on a aussi que

2C(t) - C{t - h) - C(t + h)

2 (C(t) - C(x)) + (C(x) - C{t - h)) + (C(x) - C(t - h))

Un des trois membres C(t) - C(x), C(x) - C(t + h), C{x) - C(t — /z) est donc

supérieur à cam/4. Donc on peut trouver un point xm tel que
I C(xm) - C(x) | > cam/4 et | xm - x | ^ 3n/(2bm).

Soit ô ]0, 1[. On peut trouver un entier m tel que

3n/(2bm) ^ ô < 3n/(2bm~l). En se servant de cette dernière inégalité et de

l'identité (1 /b)a a, on obtient que | C(xm) - C(x) | > ac(28/(3n))a/4.
Pour b ac(2/(3n))a/4, le théorème est vérifié.

3. Cas général

a) Sans faire d'autre hypothèse sur b que b > l/a} nous démontrons le

théorème pour la fonction de Weierstrass f(x) C(x).

Soient L, N et m des entiers positifs vérifiant

bL < Nn et L < m

Nous introduisons la quantité

x + h

/=7| C{t) cos bmtdt
}x - h

où h vaut Nn/bm.

I am+ Yé a"
n ^ m, n 0

cos(bn + bm)x cos(bn - bm)x

bn + bn bn - bn

sin bnh

h
(- 1)N •

Nous ferons appel aux inégalités | sin bnh | ^ 1 si n ^ m — L et | sin bnh |

< bnh si n < m - L. On a

\I - am | < Y
2a"b" 2a"

n 0 bm — bn n ^ m,n m - L \ bn — bm \h
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