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FONCTION DE WEIERSTRASS 91

La non-dérivabilité de la fonction f en tout point x est une conséquence
simple de ce théoréme. L’inégalité en conclusion empéche les quotients
différentiels au point x d’étre bornés. Nous présentons deux démonstrations
de ce théoréeme. La premiére démonstration, élémentaire, n’est cependant
valide que pour la fonction de Weierstrass C(x) et que si b est un entier impair.
La seconde démonstration relativement courte et un peu magique considere le
cas géné€ral ou b est un nombre réel supérieur a 1/a.

2. CAS OU b EST UN ENTIER IMPAIR

Soient m > 1 un entier, x € R et k un entier tel que | b™x/(2n) — k|
< 1/2. Posons ¢t = 2nk/b™ et h = n/(2b™). On a alors

m—~1 m— 1

C(t—h)= ) av"cosb™(t—h), C(t+h)= ) a"cosb"(t+h),
n=20

n=20

m—1

C@#)= ) a"cosb"t+a™/(1-a).
n=20

Par suite
2C(t) - C(t—h)—C(@t+h)=A + 2a"/(1 —a),
avec
m -1 m—1
A= ngo 2a"(cosb"t) (1 — cosb™h) > — ngo 2a"(1 — cosb™h) .

Comme 1 — cos P < B?/2, on obtient donc:

m— 1

Az - ) a'(b*h)? = — h2{(ab¥)" — 1}/(ab* - 1)

n=20

> — h%(ab?)™/(ab? - 1) .
Finalement on a
2C(t) = C(t+h) — C(t—h) > a™c,
ouc=2/(1-a) — n2/[4(ab?— 1)] est positif. En effet on a
c={8(ab*-1)-n?(1-a)}/{4(1 —a) (ab?—1)}

et comme le dénominateur est toujours positif, ¢ est du méme signe que le
numerateur. On a ad > 1, d’ol 8ab2+ m2a > 80 + mw2/b. Pour b entier plus
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grand que 1, on a 86 + n2/b > 8 + n?, car I’équation 862 — 8 + n2)b + m?
= 0 a deux racines b =1 et b = n%/8.
Par ailleurs on a aussi que

2C(1) — C(t — h) — C(t+ h)
= 2(C(t) - C(x)) + (C(x)— C(t—h)) + (C) - Ct—-h)) .

Un des trois membres C(¢) — C(x), C(x) — C(t+ h), C(x) — C(t — h) est donc
supérieur a ca™/4. Donc on peut trouver un point Xx, tel que
| C(xp) — C(X)| > cam/4 et | x, — x| < 3n/(2b™).

Soit 8€]0,1[. On peut trouver un entier m tel que
3n/(2b™) < & < 3n/(2b™-1). En se servant de cette derniére inégalité et de
'identité (1/b)® = a, on obtient que | C(x,) — C(x)|> ac(28/(3m))*/4.
Pour & = ac(2/(3n))*/4, le théoréme est vérifié.

3. CAS GENERAL

a) Sans faire d’autre hypothése sur b que b > 1/a, nous démontrons le
théoréme pour la fonction de Weierstrass f(x) = C(x).

Soient L, N et m des entiers positifs vérifiant
bL<Nn et L<m.

Nous introduisons la quantité
1 x+ h
f= Zs C(t)cos b™tdt
ou h vaut Nn/b™.

(= DN.

[=gm+ E " cos(b” + b™)x N cos(b” — b™)x1sinb"h
b+ bm bn — pm )

n+m,n=20

Nous ferons appel aux inégalités |sin b"h| < 1sin>m — L et|sinb"h |
" <bthsin<m-—L.Ona

m~L—1 nhn * n
Z 2a"b n 2a

|1 —am| < .
n=0 bhm — p" n¢m,n=m—L|b”—bm‘h
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