Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 38 (1992)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LA NON-DÉRIVABILITÉ DE LA FONCTION DE WEIERSTRASS

Autor: Baouche, A. / Dubuc, S.

Kapitel: 1. Propriétés de Lipschitz de la fonction de Weierstrass

DOI: https://doi.org/10.5169/seals-59484

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LA NON-DÉRIVABILITÉ DE LA FONCTION DE WEIERSTRASS

par A. BAOUCHE et S. DUBUC

En 1872, Weierstrass [2] a donné un exemple d'une fonction nulle part dérivable à savoir: $\sum_{n=0}^{\infty} a^n \cos b^n \pi x$. Les conditions données par Weierstrass sur les paramètres a et b pour que cette fonction soit continue, mais qu'elle ne possède en aucun endroit un quotient différentiel fini ou infini sont: 0 < a < 1, $ab > 1 + 3\pi/2$, où b est un entier impair. Par la suite, plusieurs mathématiciens ont reconnu que des conditions plus générales laissent la fonction de Weierstrass sans dérivée. C'est Hardy [1] qui a mené la meilleure analyse de la fonction de Weierstrass. Il a démontré que chacune des fonctions $\sum_{n=0}^{\infty} a^n \cos b^n x$ et $\sum_{n=0}^{\infty} a^n \sin b^n x$ ne possède nulle part un quotient différentiel fini pour 0 < a < 1 et $ab \ge 1$. Cependant la démonstration de Hardy, bien qu'habile, profonde et exhaustive requiert beaucoup d'étapes. Notre objectif est d'exposer une démonstration beaucoup plus simple de l'inexistence de la dérivée de ces deux fonctions en tout point lorsque les deux conditions suivantes sont remplies: 0 < a < 1 et ab > 1.

1. Propriétés de Lipschitz de la fonction de Weierstrass

Nous citons le théorème principal de Hardy [1] qui entraîne la nondérivabilité de la fonction de Weierstrass. Auparavant, désignons ainsi deux fonctions apparentées à la fonction de Weierstrass:

$$C(x) = \sum_{n=0}^{\infty} a^n \cos b^n x \quad \text{et} \quad S(x) = \sum_{n=0}^{\infty} a^n \sin b^n x.$$

THÉORÈME (Hardy [1]). Supposons que 0 < a < 1 et ab > 1 de sorte que $\alpha = -\ln a / \ln b < 1$. Alors chacune des fonctions f(x) = C(x) ou S(x) satisfait la condition $f(x+h) - f(x) = O(|h|^{\alpha})$, pour toute

valeur de x; mais aucune de ces fonctions ne satisfait la condition $f(x + h) - f(x) = o(|h|^{\alpha})$, quelle que soit la valeur de x.

Nous améliorons une partie du dernier énoncé.

THÉORÈME. Avec les mêmes hypothèses, si f(x) = C(x) ou S(x), alors il existe une constante $\varepsilon > 0$ telle que, pour tout $x \in \mathbb{R}$ et pour tout nombre $\delta \in]0,1[$, il existe un nombre t voisin de x à δ près pour lequel $|f(t) - f(x)| > \varepsilon \delta^{\alpha}$.

La figure 1 illustre le contenu du dernier théorème. On y trace le graphique de la fonction de Weierstrass y = C(x) où a = 1/2 et b = 7/2 et de la relation $|y - y_0| = \varepsilon |x - x_0|^{\alpha}$. Dans ce cas-ci, $\alpha = 0.55$ et $\varepsilon = 0.52$; le point x_0 a été choisi comme $2\pi/3$ et $y_0 = C(x_0)$.

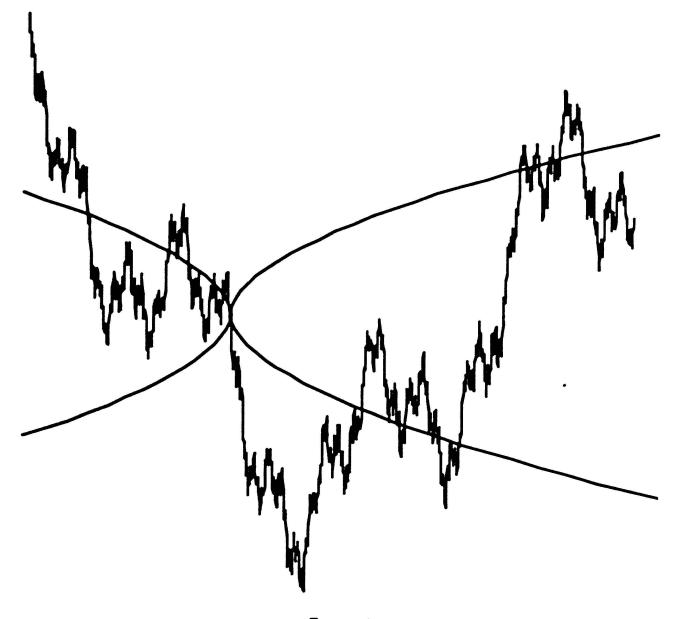


FIGURE 1

Graphe d'une fonction de Weierstrass et de la relation $|y - y_0| = \varepsilon |x - x_0|^{\alpha}$

La non-dérivabilité de la fonction f en tout point x est une conséquence simple de ce théorème. L'inégalité en conclusion empêche les quotients différentiels au point x d'être bornés. Nous présentons deux démonstrations de ce théorème. La première démonstration, élémentaire, n'est cependant valide que pour la fonction de Weierstrass C(x) et que si b est un entier impair. La seconde démonstration relativement courte et un peu magique considère le cas général où b est un nombre réel supérieur à 1/a.

2. Cas où b est un entier impair

Soient $m \ge 1$ un entier, $x \in \mathbb{R}$ et k un entier tel que $|b^m x/(2\pi) - k| \le 1/2$. Posons $t = 2\pi k/b^m$ et $h = \pi/(2b^m)$. On a alors

$$C(t-h) = \sum_{n=0}^{m-1} a^n \cos b^n (t-h) , \qquad C(t+h) = \sum_{n=0}^{m-1} a^n \cos b^n (t+h) ,$$

$$C(t) = \sum_{n=0}^{m-1} a^n \cos b^n t + a^m / (1-a) .$$

Par suite

$$2C(t) - C(t-h) - C(t+h) = A + 2a^{m}/(1-a)$$
,

avec

$$A = \sum_{n=0}^{m-1} 2a^n(\cos b^n t) (1 - \cos b^n h) \geqslant -\sum_{n=0}^{m-1} 2a^n (1 - \cos b^n h).$$

Comme 1 – $\cos \beta \le \beta^2/2$, on obtient donc:

$$A \geqslant -\sum_{n=0}^{m-1} a^n (b^n h)^2 = -h^2 \{ (ab^2)^m - 1 \} / (ab^2 - 1)$$
$$> -h^2 (ab^2)^m / (ab^2 - 1) .$$

Finalement on a

$$2C(t) - C(t+h) - C(t-h) > a^m c,$$

où $c = 2/(1-a) - \pi^2/[4(ab^2 - 1)]$ est positif. En effet on a

$$c = \left\{8(ab^2 - 1) - \pi^2(1 - a)\right\} / \left\{4(1 - a)(ab^2 - 1)\right\}$$

et comme le dénominateur est toujours positif, c est du même signe que le numérateur. On a ab > 1, d'où $8ab^2 + \pi^2 a > 8b + \pi^2/b$. Pour b entier plus