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LA NON-DÉRIVABILITÉ
DE LA FONCTION DE WEIERSTRASS

par A. Baouche et S. Dubuc

En 1872, Weierstrass [2] a donné un exemple d'une fonction nulle part
dérivable à savoir: £ 0

Qn cos bnnx. Les conditions données par Weierstrass

sur les paramètres a et b pour que cette fonction soit continue, mais

qu'elle ne possède en aucun endroit un quotient différentiel fini ou infini sont:
0 < a < l,ab > 1 + 37t/2, où b est un entier impair. Par la suite, plusieurs
mathématiciens ont reconnu que des conditions plus générales laissent la

fonction de Weierstrass sans dérivée. C'est Hardy [1] qui a mené la meilleure

analyse de la fonction de Weierstrass. Il a démontré que chacune des fonctions
ancosbnx et Y,n oan sinù"x ne possède nulle part un quotient

différentiel fini pour 0 < a < 1 et ab > 1. Cependant la démonstration de

Hardy, bien qu'habile, profonde et exhaustive requiert beaucoup d'étapes.
Notre objectif est d'exposer une démonstration beaucoup plus simple de

l'inexistence de la dérivée de ces deux fonctions en tout point lorsque les deux
conditions suivantes sont remplies: 0<a< \ et ab >\.

1. Propriétés de Lipschitz de la fonction de Weierstrass

Nous citons le théorème principal de Hardy [1] qui entraîne la non-
dérivabilité de la fonction de Weierstrass. Auparavant, désignons ainsi deux
fonctions apparentées à la fonction de Weierstrass:

CM ir=oß"cosö"* et S(x) Y,

Théorème (Hardy [1]). Supposons que 0 < < 1 et 1 de
sorte que a— lna/lnô < 1. Alors chacune des fonctions f (x) C(x)
ou S(x) satisfait la condition f(x+ h-f(x) 0(\h\a), pour toute
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valeur de x; mais aucune de ces fonctions ne satisfait la condition
~ /(•*) o(| h|°), quelle que soit la valeur de x.

Nous améliorons une partie du dernier énoncé.

Théorème. Avec les mêmes hypothèses, si f(x) C(x) ou S(x),
alors il existe une constante e > 0 telle que, pour tout e R et pour
tout nombre 8 e )0, 1(, il existe un nombre t voisin de x à 6 près pour
lequel \ f(t) - f(x) \>e8°.

La figure I illustre le contenu du dernier théorème. On y trace le graphique
de la fonction de Weierstrass yC(x) où 1/2 et 7/2 et de la relation

I y — y»I e | x - .Vol °. Dans ce cas-ci, a 0,55 et e 0,52; le point x0 a été
choisi comme 2n/3 et y„ C(jc0).

Figure 1

Graphe d'une fonction de Weierstrass et de la relation |^-^ol e|-*-^ola
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La non-dérivabilité de la fonction / en tout point x est une conséquence

simple de ce théorème. L'inégalité en conclusion empêche les quotients
différentiels au point x d'être bornés. Nous présentons deux démonstrations
de ce théorème. La première démonstration, élémentaire, n'est cependant
valide que pour la fonction de Weierstrass C(x) et que si b est un entier impair.
La seconde démonstration relativement courte et un peu magique considère le

cas général où b est un nombre réel supérieur à 1 /a.

2. Cas où b est un entier impair

Soient m ^ 1 un entier, x e R et k un entier tel que | bmx/(2n) - k |

^ 1/2. Posons t 2%k/bm et h %/(2bm). On a alors

m - 1 m - 1

C{t - h) Y a"cos ~ h) » + h) Y a"cos bn(t + h)
n 0 n 0

m - 1

C(0 - Y a"cos bnt + am/{\ - a)
n 0

Par suite

2C(t) - C(t -h) - C(t+ h) A + 2am/(l - a)

avec

m - 1 m - 1

A Y 2an(cosbnt) (1 - cosbnh) ^ - Y 2an(l - cosbnh)
« 0 n 0

Comme 1 - cos ß ^ ß2/2, on obtient donc:

m - 1

•<4 ^ - S a"(b"h)2- /î2{(cè2)m- l}/(aè2- 1)
n 0

> - h2(ab2)m/(ab2- 1)

Finalement on a

2C(0 - C(f + A) - C(t ~h)>
où c 2/(1 — a) — 7i2/ \A(cib2 — 1)] est positif. En effet on a

c {8(aè2 - 1) - tc2(1 - a4(1- a) (ab2 - 1)}

et comme le dénominateur est toujours positif, c est du même signe que le
numérateur. On a ab >1, d'où S,ab2+ n2a > 8b +n2/b.Pourb entier plus
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grand que 1, on a 8b + n2/b > 8 + n2, car l'équation 8b2 - (8 + n2)b + n2

0 a deux racines b 1 et b n2/8.
Par ailleurs on a aussi que

2C(t) - C{t - h) - C(t + h)

2 (C(t) - C(x)) + (C(x) - C{t - h)) + (C(x) - C(t - h))

Un des trois membres C(t) - C(x), C(x) - C(t + h), C{x) - C(t — /z) est donc

supérieur à cam/4. Donc on peut trouver un point xm tel que
I C(xm) - C(x) | > cam/4 et | xm - x | ^ 3n/(2bm).

Soit ô ]0, 1[. On peut trouver un entier m tel que

3n/(2bm) ^ ô < 3n/(2bm~l). En se servant de cette dernière inégalité et de

l'identité (1 /b)a a, on obtient que | C(xm) - C(x) | > ac(28/(3n))a/4.
Pour b ac(2/(3n))a/4, le théorème est vérifié.

3. Cas général

a) Sans faire d'autre hypothèse sur b que b > l/a} nous démontrons le

théorème pour la fonction de Weierstrass f(x) C(x).

Soient L, N et m des entiers positifs vérifiant

bL < Nn et L < m

Nous introduisons la quantité

x + h

/=7| C{t) cos bmtdt
}x - h

où h vaut Nn/bm.

I am+ Yé a"
n ^ m, n 0

cos(bn + bm)x cos(bn - bm)x

bn + bn bn - bn

sin bnh

h
(- 1)N •

Nous ferons appel aux inégalités | sin bnh | ^ 1 si n ^ m — L et | sin bnh |

< bnh si n < m - L. On a

\I - am | < Y
2a"b" 2a"

n 0 bm — bn n ^ m,n m - L \ bn — bm \h



FONCTION DE WEIERSTRASS 93

Nous minorons les quantités \bm — bn\ par la quantité bm bm l.

2anb» ^ y 2anI + L
n Q frm _ frm-l n m - L (bm - bm~l)k

2am~Lbm~L 2am~L
~t"

oab - 1) (bm - bm-1) (ôw - bm~l)(1 -
On a donc, puisque Ntc > bL,

2am-Lb~L 2am~L
\ j — am\ < + <. sa
1 ' " (aô - 1) (1 - l/ô) (1 - l/ô) (1 - a)Nn

avec

2a~Lb~L 2a~L
s

(aft - 1) (1 - l/ô) (1 - l/ô) (1 - tf)ôL

Il est possible de trouver un entier L suffisamment grand pour que s < l.
Si c (1 - s)/2, alors c > 0 et / > 2cam.

Remarquons que

1 (x + h

I -1 [C(0 - C(x)] cos(bmt)dt ;

h%

par suite, il existe au moins une valeur de telle que | - x | ^ h et
| C(xm) - C(x) | > cam.

Soit 8 e ]0, 1[. On peut trouver un nombre entier m > L tel que

h N%/bm ^ 8 < Nn/bm~l

En se servant de cette dernière égalité et de l'identité (1 /b)a a, on obtient

que | C(xm) - C(x) | > ac(8/(Nn))a. Pour 8 ac(l/(Nn))a, le théorème est

vérifié.

b) On peut modifier la démonstration précédente pour analyser la fonction
S(x). Pour ce faire, on pose

\[x+h
J=— I S(t;

Sin b*h(_ 1)jV

ô
«; x - h

on supposera que h vaut N%/bm. On a

/ am+ £ a"
n =£ m, n 0

cos (b" + bm)x cos

b" + Jjm Jjn _ frm
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Par la suite, toutes les inégalités obtenues relatives aux quantités / se

transposent de la même façon relativement aux quantités / et l'on établit le théorème

pour la fonction / S.

Remarque. D'une façon générale, pour toute suite de phases (|)„, les

fonctions f(x) de la forme Ytn=&ancos(bnx-*<\>n) rempliront la conclusion

du théorème si b > 1 /a.

4. Conclusion

Nous avons exposé une démonstration très simple de la non-dérivabilité de

la fonction de Weierstrass lorsque b > l/a. Cependant nous n'avons pas

complètement égalé la performance de Hardy qui a établi que même dans le

cas b — l/a, la fonction de Weierstrass est sans dérivée. Il y aurait lieu de

simplifier l'argumentation de Hardy également dans ce cas.
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