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LA NON-DERIVABILITE
DE LA FONCTION DE WEIERSTRASS

par A. BAOUCHE et S. DUBUC

En 1872, Weierstrass [2] a donné un exemple d’une fonction nulle part
dérivable & savoir: Y. _,a"cosb"mx. Les conditions données par Weier-
strass sur les paramétres a et b pour que cette fonction soit continue, mais
qu’elle ne posséde en aucun endroit un quotient différentiel fini ou infini sont:
0<a<l,ab>1+ 3n/2, ou b est un entier impair. Par la suite, plusieurs
mathématiciens ont reconnu que des conditions plus générales laissent la
fonction de Weierstrass sans dérivée. C’est Hardy [1] qui a mené la meilleure
analyse de la fonction de Weierstrass. Il a démontré que chacune des fonctions
) :z carcoshx et ) :z ,a"sinb”x ne posséde nulle part un quotient
différentiel fini pour 0 < a <1 et ab > 1. Cependant la démonstration de
Hardy, bien qu’habile, profonde et exhaustive requiert beaucoup d’étapes.
Notre objectif est d’exposer une démonstration beaucoup plus simple de
I’inexistence de la dérivée de ces deux fonctions en tout point lorsque les deux
conditions suivantes sont remplies: 0 < a < 1 et ab > 1.

1. PROPRIETES DE LIPSCHITZ DE LA FONCTION DE WEIERSTRASS

Nous citons le théoréme principal de Hardy [1] qui entraine la non-
dérivabilité de la fonction de Weierstrass. Auparavant, désignons ainsi deux
fonctions apparentées a la fonction de Weierstrass:

Cx)= Y _,a"cosb"x et S(x) = Y~ _,arsinbnx .

THEOREME (Hardy [1]). Supposons que 0<a<1 et ab>1 de
sorte que o = — Ina/Inb < 1. Alors chacune des fonctions f(x) = C(x)
ou S(x) satisfait la condition f(x+h) — f(x) = O(|h|%), pour toute
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valeur de x; mais aucune de ces Jonctions ne satisfait la condition f(x + h)
- f(x) = o(|h|®), quelle que soit la valeur de x.

Nous améliorons une partie du dernier énoncé.

THEOREME. Avec les mémes hypothéses, si f(x) = C(x) ou S(x),
alors il existe une constante € > 0 (telle que, pour tout x € R et pour
tout nombre & € )0, 1[, il existe un nombre t voisinde x a § preés pour
lequel | f(1) — f(x)| > €&°.

La figure 1 illustre le contenu du dernier théoréme. On y trace le graphique
de la fonction de Weierstrass y = C(x)oua = 1/2et b = 7/2 et de la relation
|¥ = ¥ol=€|x - x|°. Dans ce cas-ci, a = 0,55 et € = 0,52; le point x, a été
choisi comme 2n/3 et y, = C(xo).

FIGURE 1

Graphe d’une fonction de Weierstrass et de la relation |y — yo| =€ |x - xo|®
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La non-dérivabilité de la fonction f en tout point x est une conséquence
simple de ce théoréme. L’inégalité en conclusion empéche les quotients
différentiels au point x d’étre bornés. Nous présentons deux démonstrations
de ce théoréeme. La premiére démonstration, élémentaire, n’est cependant
valide que pour la fonction de Weierstrass C(x) et que si b est un entier impair.
La seconde démonstration relativement courte et un peu magique considere le
cas géné€ral ou b est un nombre réel supérieur a 1/a.

2. CAS OU b EST UN ENTIER IMPAIR

Soient m > 1 un entier, x € R et k un entier tel que | b™x/(2n) — k|
< 1/2. Posons ¢t = 2nk/b™ et h = n/(2b™). On a alors

m—~1 m— 1

C(t—h)= ) av"cosb™(t—h), C(t+h)= ) a"cosb"(t+h),
n=20

n=20

m—1

C@#)= ) a"cosb"t+a™/(1-a).
n=20

Par suite
2C(t) - C(t—h)—C(@t+h)=A + 2a"/(1 —a),
avec
m -1 m—1
A= ngo 2a"(cosb"t) (1 — cosb™h) > — ngo 2a"(1 — cosb™h) .

Comme 1 — cos P < B?/2, on obtient donc:

m— 1

Az - ) a'(b*h)? = — h2{(ab¥)" — 1}/(ab* - 1)

n=20

> — h%(ab?)™/(ab? - 1) .
Finalement on a
2C(t) = C(t+h) — C(t—h) > a™c,
ouc=2/(1-a) — n2/[4(ab?— 1)] est positif. En effet on a
c={8(ab*-1)-n?(1-a)}/{4(1 —a) (ab?—1)}

et comme le dénominateur est toujours positif, ¢ est du méme signe que le
numerateur. On a ad > 1, d’ol 8ab2+ m2a > 80 + mw2/b. Pour b entier plus
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grand que 1, on a 86 + n2/b > 8 + n?, car I’équation 862 — 8 + n2)b + m?
= 0 a deux racines b =1 et b = n%/8.
Par ailleurs on a aussi que

2C(1) — C(t — h) — C(t+ h)
= 2(C(t) - C(x)) + (C(x)— C(t—h)) + (C) - Ct—-h)) .

Un des trois membres C(¢) — C(x), C(x) — C(t+ h), C(x) — C(t — h) est donc
supérieur a ca™/4. Donc on peut trouver un point Xx, tel que
| C(xp) — C(X)| > cam/4 et | x, — x| < 3n/(2b™).

Soit 8€]0,1[. On peut trouver un entier m tel que
3n/(2b™) < & < 3n/(2b™-1). En se servant de cette derniére inégalité et de
'identité (1/b)® = a, on obtient que | C(x,) — C(x)|> ac(28/(3m))*/4.
Pour & = ac(2/(3n))*/4, le théoréme est vérifié.

3. CAS GENERAL

a) Sans faire d’autre hypothése sur b que b > 1/a, nous démontrons le
théoréme pour la fonction de Weierstrass f(x) = C(x).

Soient L, N et m des entiers positifs vérifiant
bL<Nn et L<m.

Nous introduisons la quantité
1 x+ h
f= Zs C(t)cos b™tdt
ou h vaut Nn/b™.

(= DN.

[=gm+ E " cos(b” + b™)x N cos(b” — b™)x1sinb"h
b+ bm bn — pm )

n+m,n=20

Nous ferons appel aux inégalités |sin b"h| < 1sin>m — L et|sinb"h |
" <bthsin<m-—L.Ona

m~L—1 nhn * n
Z 2a"b n 2a

|1 —am| < .
n=0 bhm — p" n¢m,n=m—L|b”—bm‘h

A A Do
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Nous minorons les quantités | b™ — b” | par la quantité b™ — pm—1;

-L-1 -
" 2a"b" 2a”
l[—a”’|< Z o Y
n=0 pm — pm-1 n=m—L(bm—bm‘1)h
m—Lpm—-L m—L
2a b N 2a

@1 Gm-bm) (- b (1 —a)h
On a donc, puisque bh = Nn > bl

Zam—Lb—L Zam—L

(ab—-1)(1-1/b) ’ (1-1/b) (1 —a)Nr

|7 —am| < < sam

avec
2a " Lp-L 2a-L

5 = + :
a-1)1Q-1/b) (A -1/b) (1 —a)b*

Il est possible de trouver un entier L suffisamment grand pour que s < 1.
Sic=(-s)2, alors ¢ >0 et I>2ca™.
Remarquons que

X+ h
I = %s [C(t) — C(x)] cos(b™t)dt ;

x—h
par suite, il existe au moins une valeur de x,, telle que |x, — x| < & et
| C(x,) — C(X)| > ca™.
Soit 8 € ]0, 1[. On peut trouver un nombre entier m > L tel que

h=Nn/b"< &< Nn/bm-1.

En se servant de cette derniére égalité et de I’identité (1/56)® = a, on obtient
que | C(x,) — C(x) | > ac(8/(Nw))e. Pour € = ac(1/(N=))*, le théoréme est
vérifié.

b) On peut modifier la démonstration précédente pour analyser la fonction
S(x). Pour ce faire, on pose

X+ h
J = Zg S(t)sinb™tdt ;

x—h

on supposera que 2 vaut Nn/b™. On a

J=an+ Y  a [cos(b" +b™)x _ cos(b” - b™)x ] sinb"h (= )N

b + b7 br — bm h
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Par la suite, toutes les inégalités obtenues relatives aux quantités / se trans-
posent de la méme facon relativement aux quantités J et I’on établit le théoréme
- pour la fonction f = S.

Remarque. D’une fagon générale, pour toute suite de phases ¢,, les
fonctions f(x) de la forme E:z 0 @ncos (b"x — ¢,) rempliront la conclusion

du théoréme si b > 1/a.

4. CONCLUSION

Nous avons expos¢ une démonstration tres simple de la non-dérivabilité de
la fonction de Weierstrass lorsque b > 1/a. Cependant nous n’avons pas
compleétement égalé la performance de Hardy qui a établi que méme dans le
cas b = 1/a, la fonction de Weierstrass est sans dérivée. Il y aurait lieu de
simplifier ’argumentation de Hardy également dans ce cas.
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