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POLYÈDRES ET RÉSEAUX 83

3. Propriétés énumératives des polytopes convexes entiers

3.1. Comportement polynomial de fonctions de comptage

Soient P un polytope convexe entier, c'est-à-dire l'enveloppe convexe d'un

nombre fini de points de M, et co un poids (voir 2.4). Pour tout entier n ^ 1,

on pose

i(ù,p(n) — £ (ù(m,nP),
m 6 (nP) n M

où nP {np |p e P).

Théorème. La fonction ia,p se prolonge en une fonction polynomiale

sur R, de degré au plus d.

Démonstration. Soit CS l'ensemble des sommets de P. Pour tout 5 6

soit Ps le cône engendré par — s + P. Alors l'ensemble des sommets de nP

est et on a: (nP)ns Ps pour tout 5 6?. D'après le théorème 2.4, on a:

£ co (m, nP)xm
m g (nP) n M s e

De plus, chaque ®&(PS) est combinaison linéaire à coefficients entiers de

n

termes de la forme xq (1 - xm>) ~1 où n ^ d. Choisissons une forme
i 1

linéaire X sur F, telle que X(mj) ^ 0 chaque fois que 1 - xmi figure au
dénominateur d'un des Ow(P5). Soit /eR\{0) Il existe un unique
morphisme d'algèbres s: Z[M] R tel que z(xm) exp(tX(m)), où exp est la
fonction exponentielle. Par hypothèse, 8 s'étend à l'algèbre engendrée par
Z [M] et les Ow(P5). D'où la relation

(8) £ a(rn, nP) exp(tX(m)) £ exp (tnl(s)) s(Oa(Ps))
m e (nP) n M s g rf

De plus, e(Ow(P5)) est une combinaison linéaire de termes

n

exp (fk(aj)n (1 - exp(t\(m,)) -1
i 1

donc son développement en série de Laurent en t, est de la forme

+ oo

e^oCPi)) L
1 -
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avec rs ^ d. En comparant les termes constants dans les développements des

deux membres de (8) en série de Laurent en t, on trouve

Y co(m, nP) « Y É a-p(s) nP i
m e (rtP) nM s e 0 ^7Î

d'où le résultat.

On note encore i0hP la fonction polynomiale ainsi définie. En général,

V/>(0) n'est pas égale à 1; sa valeur correcte sera calculée dans le corollaire 3

ci-après.

3.2. Loi de réciprocité

On conserve les notations de 3.1. Soit co* le poids dual de co (voir 2.4).

Théorème. On a Videntité suivante entre fonctions polynomiales:

hD,P(- 0 (~ 1)«W(0 •

Démonstration. On reprend les notations de la preuve du théorème 3.1.

On a

<bJnP) £ x»>*a(Pt)
s e ir

(-1)« £
ie?

d'après le théorème 2.4. Par suite, on a

(9) £ <o(m, nP)exp(- l)d £ exp/>,))m e (nP) n M se?

+ OO

Soit s(OC0*(P5)) £ a*(s)tq son développement en série de Laurent.
Q - rs

En remplaçant t par - t dans (9), on obtient:

+ oo

Y cù{m, nP)exp( - tX(m)) (- l)d Y exP(~ tnX(s)) Y a*(s)tq •

m e (nP) n M s e W q - rs

D'où, en prenant le terme constant,

4,pin) XX (~\y££ a*_Js)7^(~(- l)rf4*,/> (- »)
î 6 p 0 p]

d'après la fin de la preuve du théorème 3.1.
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