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3. Propriétés énumératives des polytopes convexes entiers

3.1. Comportement polynomial de fonctions de comptage

Soient P un polytope convexe entier, c'est-à-dire l'enveloppe convexe d'un

nombre fini de points de M, et co un poids (voir 2.4). Pour tout entier n ^ 1,

on pose

i(ù,p(n) — £ (ù(m,nP),
m 6 (nP) n M

où nP {np |p e P).

Théorème. La fonction ia,p se prolonge en une fonction polynomiale

sur R, de degré au plus d.

Démonstration. Soit CS l'ensemble des sommets de P. Pour tout 5 6

soit Ps le cône engendré par — s + P. Alors l'ensemble des sommets de nP

est et on a: (nP)ns Ps pour tout 5 6?. D'après le théorème 2.4, on a:

£ co (m, nP)xm
m g (nP) n M s e

De plus, chaque ®&(PS) est combinaison linéaire à coefficients entiers de

n

termes de la forme xq (1 - xm>) ~1 où n ^ d. Choisissons une forme
i 1

linéaire X sur F, telle que X(mj) ^ 0 chaque fois que 1 - xmi figure au
dénominateur d'un des Ow(P5). Soit /eR\{0) Il existe un unique
morphisme d'algèbres s: Z[M] R tel que z(xm) exp(tX(m)), où exp est la
fonction exponentielle. Par hypothèse, 8 s'étend à l'algèbre engendrée par
Z [M] et les Ow(P5). D'où la relation

(8) £ a(rn, nP) exp(tX(m)) £ exp (tnl(s)) s(Oa(Ps))
m e (nP) n M s g rf

De plus, e(Ow(P5)) est une combinaison linéaire de termes

n

exp (fk(aj)n (1 - exp(t\(m,)) -1
i 1

donc son développement en série de Laurent en t, est de la forme

+ oo

e^oCPi)) L
1 -
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avec rs ^ d. En comparant les termes constants dans les développements des

deux membres de (8) en série de Laurent en t, on trouve

Y co(m, nP) « Y É a-p(s) nP i
m e (rtP) nM s e 0 ^7Î

d'où le résultat.

On note encore i0hP la fonction polynomiale ainsi définie. En général,

V/>(0) n'est pas égale à 1; sa valeur correcte sera calculée dans le corollaire 3

ci-après.

3.2. Loi de réciprocité

On conserve les notations de 3.1. Soit co* le poids dual de co (voir 2.4).

Théorème. On a Videntité suivante entre fonctions polynomiales:

hD,P(- 0 (~ 1)«W(0 •

Démonstration. On reprend les notations de la preuve du théorème 3.1.

On a

<bJnP) £ x»>*a(Pt)
s e ir

(-1)« £
ie?

d'après le théorème 2.4. Par suite, on a

(9) £ <o(m, nP)exp(- l)d £ exp/>,))m e (nP) n M se?

+ OO

Soit s(OC0*(P5)) £ a*(s)tq son développement en série de Laurent.
Q - rs

En remplaçant t par - t dans (9), on obtient:

+ oo

Y cù{m, nP)exp( - tX(m)) (- l)d Y exP(~ tnX(s)) Y a*(s)tq •

m e (nP) n M s e W q - rs

D'où, en prenant le terme constant,

4,pin) XX (~\y££ a*_Js)7^(~(- l)rf4*,/> (- »)
î 6 p 0 p]

d'après la fin de la preuve du théorème 3.1.
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En prenant pour poids la fonction % définie dans l'exemple 2.4. (i), on

retrouve le résultat suivant (voir [E], §6):

Corollaire 1. Soient iP(ri) card(((/xP) n M)) et iP(n) card((^P) n M).
Alors les fonctions iP et iP sont polynomials, et on a iP(-1)

(-l)V(O.
Lorsqu'on prend pour poids la fonction a définie dans l'exemple 2.4 (ii),

on a a a*, d'où le

Corollaire 2 (voir [M], Theorem 4.8). La fonction

i*,p(n) Yé a(m>nP)
m e (nP) n M

est polynomiale, et ia,p( — t) (- 1 )dia,p(l)-

Les fonctions /a>P ont été introduites par H. Hadwiger pour caractériser

l'équivalence de deux polytopes par décompositions et translations entières

(voir [H], 2.2.9).
Revenons au cas général. Pour toute face F de P, l'espace affine < F>

qu'elle engendre, est muni d'une mesure canonique p: la mesure de Lebesgue
normalisée de façon que la maille unité du réseau M n (F) soit de mesure 1.

Corollaire 3. Pour tout poids co, le coefficient de td dans ia P(t)
o o ®

est cop(P), où co co(x, P) pour tout x e P. Le coefficient de td~l
dans iatP(t) est

I (co(F, P)-0)/2) [i(F)
codim (F) - 1

Enfin, le terme constant de i^jP{t) est £ (- l)dim^co(F, P).
F

Démonstration. On a

h,, pin) £ co

F

De plus, puisque

iF°(n) - n~dim^ - n ~dim(^ £ 1

o
m e F n (1 /n)M

est une somme de Riemann pour l'intégrale \Fd\x, on a

if°(n) ~ «dim(F)
n —> o°

d'où la première assertion. Montrons d'abord la deuxième assertion lorsque
co %. Alors
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iP(n) - card((/2ÔP) n M) card ((nP) n M) - card((«9P) n M)
//?(/!) (-1 )dH-n)

où dP désigne le bord de P. Donc, si a est le coefficient de nd~1 dans iP(n),

E n(F) (-l)rf(-l)d-'a,
codim(F) - 1

d'où ût £ ja(F)/2. Dans le cas général, puisque
codimCF) - 1

LA")E <ù{F,P)ip(n) (-
F

+ E (-l)dim^co(F,P)/F(-«)
F*P

le coefficient de nd~l dans itö,p(n) est

©a- I co(/sP)n(F).
codim(F) 1

Le même argument réduit la preuve de la dernière assertion au cas où

(0 il faut montrer que iP(0) £ (- l)dim(^ 1. Mais cela résulte faci-
F

lement de la preuve du théorème 3.1, et du fait que

E <Hps)1
•

5 6 ^
V

En effet, les Ps sont les cônes de dimension maximale d'une subdivision de

V* (voir 2.2), et le corollaire 2.1 s'applique.

3.3. Le cas d'un polytope rationnel

Dans cette section, on considère un polytope convexe P dans V, rationnel

par rapport au réseau M: pour tout sommet 5 de P, il existe un entier ns> 0

tel que ns - s e M. On va étendre à cette situation les résultats de 3.1 et 3.2.

Soit co un poids; posons i&,P(n) £ co(m,nP). Notons M le
'

me (nP) n M

réseau engendré par M et les sommets de P. Soit y le plus petit entier positif
tel que y - s e M pour tout sommet s de P (c'est l'exposant du groupe abélien

fini M/M).
\ Théorème. Il existe des fonctions polynomiales i^]P, i{^]P sur R,

telles que i^,P{n) i^]P(n) si n r (mod y). De plus, on a

»«?*(-o (-i)"4v,2(-o
pour tout te R.
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Démonstration. Soit n:Z[[M]\ ^ Z[[M]] l'application définie par

n( E^dpX") S apxP
p e M p e M

C'est un morphisme de Z[M]-modules. Soit le sous-ensemble de Z

formé des produits finis d'éléments de la forme 1 - x"^p e M\{0}; et soit

S "1Z [M]le sous-anneau du corps des fractions de Z engendré par S'1

et Z [M\.De l'identité

/Y-l
(1 -XP)~1 (1 -xip) e?»

résulte que S~lZ[M\ S'lZ[M\.Parsuite, n s'étend en un unique

morphisme de Z [M]-modules, noté encore tc: S-]Z[M] t-> S-'Z[M]. On a

donc, en posant

®œ(P)= E _C ù(m,P)xmetOœ(P)= I c

m e P n M m e P n M

®JP) E nsel

De plus, puisque chaque Ps est rationnel pour le réseau M, on a: <b(Ps)

e SjlZ[M].Soit n>0un entier; écrivons + où est entier, et où

1 ^ r^ Y- Alors

E n(xns%(Ps)) E
se? se?

Le résultat s'en déduit comme dans les preuves des théorèmes 3.1 et 3.2.

RÉFÉRENCES

[B] Brion, M. Points entiers dans les polyèdres convexes. Ann. Sei. Ecole Norm.
Sup., 4e série, 21 (1988), 653-663.

[D] Demazure, M. Sous-groupes de rang maximum du groupe de Cremona. Ann.
Sei. Ecole Norm. Sup., 4e série, 3 (1970), 507-588.

[E] Ehrhart, E. Sur un problème de géométrie diophantienne linéaire. I. J. Reine
Angew Math., 226 (1967), 1-29.

[G] Godement, R. Théorie des faisceaux. Hermann, Paris, 1958.

[Ha] Hadwiger, H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie.
Springer-Verlag, Berlin-Heidelberg-New York, 1957.

[Hi] Hibi, T. Ehrhart polynomials of convex polytopes, h-vectors of simplicial com¬
plexes and non-singular projective toric varieties. Preprint, juin 1990.

[I] Ishida, M. N. Polyhedral Laurent series and Brion's equalities. International
Journal of Math. 1 (3) (1990), 251-265.


	3. Propriétés énumératives des polytopes convexes entiers
	3.1. Comportement polynomial de fonctions de comptage
	3.2. Loi de réciprocité
	3.3. Le cas d'un polytope rationnel


