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3. PROPRIETES ENUMERATIVES DES POLYTOPES CONVEXES ENTIERS

3.1. COMPORTEMENT POLYNOMIAL DE FONCTIONS DE COMPTAGE

Soient P un polytope convexe entier, c’est-a-dire I’enveloppe convexe d’un
nombre fini de points de M, et @ un poids (voir 2.4). Pour tout entier n > 1,
on pose

lo,p(n) = ) w(m, nP) ,

menP)nM

ou nP = {np|p € P}.

THEOREME. La fonction i, p se prolonge en une fonction polynomiale
sur R, de degré au plus d.

Démonstration. Soit € ’ensemble des sommets de P. Pour tout s € &,
soit P, le cdne engendré par — s + P. Alors I’ensemble des sommets de nP
est n%, et on a: (nP),, = Ps pour tout s € 4. D’apres le théoreme 2.4, on a:

Y o@m,nP)xm = ®,(nP) = ), x=®,(P;) .
menP)n M se

De plus, chaque ®,(P;) est combinaison linéaire a coefficients entiers de

n
termes de la forme x? [[ (1 —xm)~-! ou n < d. Choisissons une forme
i=1

linéaire A sur V, telle que A(m;) # 0 chaque fois que 1 — x™ figure au
dénominateur d’un des ®,(P;). Soit fe€ R\{0}. Il existe un unique
morphisme d’algébres €: Z[M] — R tel que £(x™) = exp (tA(m)), ou exp est la
fonction exponentielle. Par hypothése, € s’étend a 1’algebre engendrée par
Z.[M] et les ®,(Ps). D’ou la relation

(8) Y. o(m,nP)exp(th(m)) = Y, exp(tni(s)) - &(®y(P,)) .

me(nPynM se ¥

De plus, €(®,(P;,)) est une combinaison linéaire de termes

exp(tA (@) - J[ (1 —exp(tA(m)) -1,

=1
donc son développement en série de Laurent en ¢, est de la forme

+ oo

E(q)m(Ps)) = Z aq(S)tq )

qg=—rg
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avec r; < d. En comparant les termes constants dans les développements des
deux membres de (8) en série de Laurent en ¢, on trouve

Y w(m, nP) = Y Z a_p(S) ()

me(nP)nM se%p=0

d’ou le résultat. [

On note encore i, p la fonction polynomiale ainsi définie. En général,
iy, p(0) n’est pas égale a 1; sa valeur correcte sera calculée dans le corollaire 3
ci-apres.

3.2. LOI DE RECIPROCITE

On conserve les notations de 3.1. Soit ®* le poids dual de w (voir 2.4).

THEOREME. On a [l’identité suivante entre fonctions polynomiales:

lo,p(— 1) = (= D%iex,p() .

Démonstration. On reprend les notations de la preuve du théoréme 3.1.
On a

q)m(np) = Z xnsq)u)(Ps)
se &
= (— l)d Z xnsq)m*(_Ps)

se %

d’aprés le théoréme 2.4. Par suite, on a

©) Y o(m nP)exp(th(m)) = (- 1)¢ ) exp (tnh(s)) e(Pps(— Py)) .
memP)Nn M se?®
+ oo
Soit £(@y«(Ps)) = ), aX(s)t? son développement en série de Laurent.
q=—1Ts

En remplacant ¢ par — ¢ dans (9), on obtient:

Y wo(m, nP)exp(— A(m)) = (— 1)? Y, exp(— tni(s)) +Z°° ai(s)te .

menP)ynM se® q= ~rg

D’ou, en prenant le terme constant,

o) = (-7 Y Y a* 0 () (—n)? = (= D)igu.p (— 1)
s e ? 0

Z p=

d’aprés la fin de la preuve du théoréme 3.1. [
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En prenant pour poids la fonction y définie dans ’exemple 2.4.(i), on
retrouve le résultat suivant (voir [E], §6):

COROLLAIRE 1. Soient ip(n) = card (nP) n M)) et ip(n) = card((nP) n M).
Alors les fonctions ip et i sont polynomiales, et on a ip(—1)
= (= D%ip ().

Lorsqu’on prend pour poids la fonction a définie dans ’exemple 2.4 (ii),
on a a = o*, dou le

COROLLAIRE 2 (voir [M], Theorem 4.8). La fonction

o p(M)= Y a(m nP)

menP)nM

est polynomiale, et i, p(—1t) = (— 1), p(?).

Les fonctions i, p ont été introduites par H. Hadwiger pour caractériser
I’équivalence de deux polytopes par décompositions et translations entieres
(voir [H], 2.2.9).

Revenons au cas général. Pour toute face F de P, ’espace affine ( F')
qu’elle engendre, est muni d’une mesure canonique p: la mesure de Lebesgue
normalisée de facon que la maille unité du réseau M N { F') soit de mesure 1.

COROLLAIRE 3. Pour tout poids ®, le coefficient de t¢ dans i, p(t)
O
est Ou(P), ot ®= w(x, P) pour tout x € P. Le coefficient de t9-!
dans i, p(f) est

Y (o@F P)-o/2)u@).

codim(F) =1
Enfin, le terme constant de i, p(t) est Y, (—1)dm®P) p(F, P).
F

Démonstration. On a

ico,P(n) = E (D(F’ P)iFO(n) .

F
De plus, puisque

l'po(n) - p - dim(F) = p —dim(F) E 1
meFOn(l/n)M

est une somme de Riemann pour l’intégrale Squ, on a

iP(n) ~ nim®yF),

n — oo

d’ou la premiere assertion. Montrons d’abord la deuxiéme assertion lorsque
o = %. Alors
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ip(n) — card((ndP) N M) = card ((nP) n M) — card ((ndP) n M)
= ip(n) = (- )?%ip(—n),
ou OP désigne le bord de P. Donc, si a est le coefficient de n?-! dans ip(n),

a- ¥ uE)=(-Di-1ia,

codim(F) = 1
dota= )  wn(@)/2. Dans le cas général, puisque
codim (F) = 1
io,p(N) = Y, @(F, P)if(n) = (- 1)¢@ip(— n)
F

+ X (= D)ImBo(F, P)ip(—n),
F#P
le coefficient de n?~! dans i, p(n) est
Oa—- Y oF P)uF).
codim (F) = 1
Le méme argument réduit la preuve de la derniére assertion au cas ou
‘@ = y; il faut montrer que ip(0) = Y, (— 1)4m® = 1. Mais cela résulte faci-
F

lement de la preuve du théoréme 3.1, et du fait que

Y &P, =1.

se ¥
En effet, les FV’S sont les cones de dimension maximale d’une subdivision de
V* (voir 2.2), et le corollaire 2.1 s’applique. [

3.3. LE CAS D’UN POLYTOPE RATIONNEL

Dans cette section, on considére un polytope convexe P dans V, rationnel
par rapport au réseau M: pour tout sommet s de P, il existe un entier n; > 0
tel que n, - s € M. On va étendre a cette situation les résultats de 3.1 et 3.2.

Soit ® un poids; posons i, p(n) = ) w(m, nP). Notons M le
menP)nM

réseau engendré par M et les sommets de P. Soit y le plus petit entier positif
tel que v - s € M pour tout sommet s de P (c’est I’exposant du groupe abélien
fini M/M).

| THEOREME. I/ existe des fonctions polynomiales 18) A ig,) p sur R,

telles que iy, p(n) = i’ p(n) si n=r(mody). De plus, on a

i p(= 1) = (= DY p(=1)

pour tout t e R.
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Démonstration. Soit 7. Z[[M]] — Z[[M]] ’application définie par
(Y axr) = ), apxf.

peEM peEM
C’est un morphisme de Z[M]-modules. Soit S le sous-ensemble de Z[M]
forme des produits finis d’éléments de la forme 1 — x”,p € M \{0}; et so1t

“‘Z[M] le sous-anneau du corps des fractions de Z[M] engendré par S-
et Z[M]. De l’identité

n=20

y—1
(1-xP)~'=0~-x")"! ( Y x”P) ,

résulte que S—IZ[M] = X ‘IZ[M] Par suite, m s’étend en un unique

morphisme de Z[M]-modules, noté encore T: S *1Z[M] - S-1Z[M]. On a
donc, en posant

o,P) = Y o@mPxm e ®P)= Y olmP)x":

mePnM mePnM

D,(P) = ¥ n(x ®u(P)) .

se &

De plus, puisque chaque P, est rationnel pour le réseau M, on a: ®(P;)
€ S;ll[m. Soit # > 0 un entier; écrivons n = gy + r ou g est entier, et ou
1 <r<y. Alors

O, (nP) = ¥ n(xm@(Py) = ¥ x7m(x Dy (Py)) -
se ¥ se &

Le résultat s’en déduit comme dans les preuves des théoremes 3.1 et 3.2. ]
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