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80 M. BRION

o o
droite. Mais si P contient une droite, alors P m + P pour un m e M,

o
d'où O(P) 0. D'autre part, P n'a pas de sommet, donc (i) est triviale dans

ce cas.

De l'identité (ii) et du corollaire 2.1, suit aussitôt le

Corollaire. Pour tout cône C, et toute subdivision (Oi)iei de son

cône dual, on a

o(c) L 9(ê,),
i e I, Ci saillant

où Ci est le cône dual de g,

2.4. Fonctions caractéristiques pondérées

Définition. Un poids co est la donnée, pour tout m e V qt tout cône C,

d'un nombre réel co(m, C), tel que

co (m, C) 0 si x$ C;

co (m, C) ne dépend que de la face de m dans C;

co( — m, - C) - co (m, C).
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Si F est une face de C, on pose (o(F, C) co(m, C) où m est un point
o

quelconque de F.
Pour tout poids co, on définit son poids dual co* par

co*(m,C) S (-l)codim(F)co(F, C)
m e F

(somme sur toutes les faces de C qui contiennent m).

Proposition. Pour tout poids co, on a: co** co.

Démonstration. Soit m e C; alors

co**(/w, C)= S (-l)codim^co*(F, C)
m e F

_ ^ ijcodimOF) + codimCF'jQj^/T'?
m e F C F'

Mais pour toute face F' de C, on a

(- l)codim(F') si p' QS1 }a face de m

0 sinon ;

en effet, grâce au théorème 2.3 (ii):

^ ^ 2 ^ codim (F) 4>(i0 (- l)d Z O(-F) (-l)rf<E>(-F')
F C F' F C F'

— J) codim (F')

d'où (7) Par suite, on a co**(m, C) co(F", C) où F' est la face de m.

Exemples.

(i) Soit x le poids défini par %{m,C)

(7) Yé (-l)codim^
m e F C F'

1 si m e C

0 sinon

Alors

1 si m e C
X*(m, C)

0 sinon

(ii) On suppose V euclidien. Notons S (m, s) la sphère de centre m, de

rayon c > 0. Pour s assez petit, le rapport qOS(ra, s) n C)/\i(S(m, s)) (où q
est la mesure de Lebesgue sur S (m, s)) ne dépend pas de s; notons-le a {m, C).
Ce nombre mesure l'angle sous lequel on voit C depuis la face de m. D'après
un résultat de Brianchon et Gram (voir [PS]) on a

a* a
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Soit co un poids. Pour tout polyèdre convexe P, et tout m e V, on pose
co(m, P) co(0, PF) où F est la face de m dans P, et PF est le cône formé des

+ p),f e F, t e R+ ,p e P (voir 2.2). On définit

<P® (P)E Mm, P)xm e R[[M]]
m e P n M

Alors (px cp où x est comme dans l'exemple (i). De plus, pour tout poids co,

on a

<MP) E P)<p(F)
F

(somme sur toutes les faces F de P). Donc cpcö(P) e ^d(M) d'après 2.3. On

pose Oœ(P) ^(<pœ(P)).

Théorème, (i) Pour tout polyèdre convexe entier P, on a

®JP) E 3>œ(^)

ow ^ est l'ensemble de sommets de P, P5 est le cône engendré par
- s y P.

(ii) Pour tout cône C, on a

Oco(C) (-1)Ow*(-C)
Démonstration, (i) On a, d'après le théorème 2.3,

<S>JP) E ®(F, P) 4>(F) E P) E W)
F F s e

où est l'ensemble des sommets de la face F. D'où

ow(P) E E ®(f, p) <&(£)) E <M^) •

s e £ F s s je?

(ii) On a de même

<MC) E MF, C)<Ï>(F) E (- l)dimWco(F, C)<D(-F)
F F

E (— l)dim(/7|(X>(F, C)<E>( —F')
F' C F

(_ l)dim(C) E) E (- l)COdim(/r)(0(P, C))<D(-F')
F' F J F'

(- l)dim<c> E <û*(F',C)<ï>(-F')
F'

(_ l)dta(C)4,<o:f(_C)
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