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80 M. BRION

. . . . . O
droite. l\élals si P contient une droite, alors P = m + }% pour un m € M,
d’ou ®(P) = 0. D’autre part, P n’a pas de sommet, donc (i) est triviale dans
ce cas. [J

FIGURE 2

De I’identité (ii) et du corollaire 2.1, suit aussitot le

COROLLAIRE. Pour tout céne C, et toute subdivision (0;);c; de son
cone dual, on a

o )= ¥ oCy,

i €l, C;saillant

ou C; estle cone dual de o;.

2.4. FONCTIONS CARACTERISTIQUES PONDEREES

Définition. Un poids o est la donnée, pour tout m € V et tout cone C,
d’un nombre réel w(m, C), tel que

w(m,C) =0 si x¢ C; r

w(m, C) ne dépend que de la face de m dans C;
w(—m, —C) = o@m, C).
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Si F est une face de C, on pose o(F, C) = o(m, C) ou m est un point
O
quelconque de F.
Pour tout poids ®, on définit son poids dual w* par

o*(m,C) = ) (- H*Oa(F, C)

mekF

(somme sur toutes les faces de C qui contiennent m).

PROPOSITION. Pour tout poids ®, on a: o** = o.

Démonstration. Soit m € C; alors

w**(m, C) = Z [ l)codim(mw*(F’ 0)

mekF

— E (_ 1)codim(F)+codim(F’)w(Fl’ C) )

meFCF’

Mais pour toute face F’ de C, on a

(— 1)codimF) si  F’ est la face de m

™ Y (=i = {

meFCF' 0 sinon ;

en effet, grace au théoréme 2.3 (ii):

Y (- )=mOQF) = (D! L O(~F) = (- DD(~F)

FCF’ FCF'
— (_ l)codim(F’)q)(]g") ,
d’ou (7) . Par suite, on a o**(m, C) = o(F’, C) ou F’ est la face de m.

Exemples.

1 si C
() Soit x le poids défini par x(m, C) = { sim e
0 sinon .

Alors

1 sime 5
x*(m, C) = .
0 sinon .

(ii) On suppose V euclidien. Notons S(m, €) la spheére de centre m, de
rayon € > 0. Pour ¢ assez petit, le rapport w(S(@m, €) N C)/u(S(m, €)) (ou p
est la mesure de Lebesgue sur S(m, €)) ne dépend pas de €; notons-le a(m, C).
Ce nombre mesure I’angle sous lequel on voit C depuis la face de m. D’aprés
un résultat de Brianchon et Gram (voir [PS]) on a

o* = a .
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Soit @ un poids. Pour tout polyédre convexe P, et tout m € V, on pose
o(m, P) = (0, Pr) ou F est la face de m dans P, et Py est le cOne formé des
I(=f+p),feF,teR,,peP (voir 2.2). On définit

0(P)= Y o, P)x"eR[M]] .

mePnNnM

Alors @, = @ ou y est comme dans ’exemple (i). De plus, pour tout poids ®,
on a

0o(P) = ¥ o(F, P)o(F)

F

(somme sur toutes les faces F' de P). Donc ¢,(P) € Z,(M) d’apres 2.3. On
pose @,(P) = F(9,(P)).

THEOREME. (1) Pour tout polyedre convexe entier P, on a

q)(o(P) = E??(Dw(Ps) >

ou % est I’ensemble de sommets de P, et P, estle cOne engendré par
-5+ P.

(i) Pour tout come C, on a
D, (C) = (= DO, (- C) .
Démonstration. (i) On a, d’apres le théoréme 2.3,

0,(P) = ¥ o(F,P)O(F) = ¥ o(F,P) ¥ ®F,),

F F se %p
ou &r est ’ensemble des sommets de la face F. D’ou

o,P)= L (L oF,P)BEF,)) = ¥ ®,(P,) .

se€ Fos se %
(i1)) On a de méme

0,(C) = ¥ o(F, O)OF) = ¥ (- DInPo(F, C) (- F)
F

F

= T (- IO F, O)0(~ F)

F'CF

= (— l)dim(C) E ( Z (_ l)COdim(F)Q)(F, C))(I)(_Igz)

F' FDOF'

= (= 1)dim(©) Z o*(F’, C)(D(—ﬁ’)
&=

= (- 1)ImOP (-C). [
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