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78 M. BRION

Soit ¢ I’ensemble des x € V* tels que f(x) # — . C’est un cOne, et
JS(xX) = min, . ¢ x(s) pour tout x € ¢, ou ¥ est I’ensemble des sommets de P.
Pour toute face F de P, on note P ’ensemble des ¢(—f+p) ou f € F,
t e R, et p e P; C’est un cdne, dont on note 6y le cone dual. Remarquons
que Pr N (— Pr) est la direction du sous-espace affine engendré par F; en
particulier, Pr est saillant si et seulement si F se réduit & un sommet. On
vérifie sans peine que la famille des o, F face de P, est une subdivision de
c, avec les o,,5 € 4, comme cbnes de dimension maximale. De plus,
flos=s pour tout se %, et P= n (s + Py) si P ne contient aucune

se %

droite.

Réciproquement, soit (6;);; une subdivision d’un coéne ¢ de V*. Pour
tout i € I, soit f; € M, tel que f; | 6, = f; si o; est une face de o;. On suppose
que la fonction f, obtenue par recollement des f;, est strictement convexe,
c’est-a-dire que f(a) + f(b) < f(a + b) chaque fois que a, b appartiennent a
des cones distincts de la subdivision. Alors P = n (fi+ 6;) est un polyédre

iel
convexe entier, ayant pour sommets les f; tels que la dimension de o; soit
maximale, et pour fonction d’appui f. De 2.1 suit donc le

THEOREME. Soient P un polyédre convexe entier, et % [’ensemble de
ses sommets. Alors

O(P) = ), X ()

se €

ou P, est le cone engendré par — s + P.

2.3. FONCTIONS CARACTERISTIQUES DE POLYEDRES OUVERTS

O
Pour tout convexe C de V, on note C son intérieur relatif, c’est-a-dire

I’intérieur de C dans ’espace affine qu’il engendre.

THEOREME. (i) Pour tout polyédre convexe entier P, on a:
O
O(P) € Zy(M), et

o) = ¥ x0(P,)

se

avec les notations ci-dessus.
O
(ii) Pour tout céne saillant C, on a: ¢(C) € ZLy(M), et

®(C) = (— 1)4m OB (- C)

- ou — C estle cone opposé a C.
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Démonstration. On peut supposer que P engendre V. On associe a P sa
fonction d’appui f, et une subdivision (6;);  ; de 6 comme €n 2.2. Supposons
d’abord que P est borné; alors ¢ = V*. Montrons que

. O
(4) Y, (= hedm@do(f; — C) = (= D9 (P) ,

iel
ou on pose C; = 6;. Comme en 2.1, il suffit de montrer que

(= D? si me P

0 sinon .

(5) Z (— 1)codim(o,-) — {
iel,me fi— Cj
On pose B(m) = {x e V*|m(x) > f(x)} et on considére les groupes de
cohomologie H"(V*, B(m)). Puisque f est linéaire sur chaque o;, I’ensemble
6, N B(m) est vide ou convexe, d’ott comme en 2.1: H"(c;, B(m) N 6;) =0
pour tout n > 1. Par suite, H"(V*, B(m)) est le n-iéme groupe de coho-
mologie du complexe

(6) o> @ Hoi,,B(m)no)—

dim(c;) = n
De plus, H°(c;, B(m) N o;) est égal & Q si m < f sur o;, C’est-a-dire si
m € f; — C;; et a 0 sinon. D’autre part, on a:

H~(V*, B(m)) = H'™"(V*\B(m))

par dualité d’Alexander. De plus, puisque V*\B(m) = {xe V* | m(x)
< f(x)} est un cone convexe fermé de V*, on a: Hﬁ,(V*\B(m)) = 0 pour
tout i > 0, sauf si V¥\B(m) = {0} eti = 0. D’ou H"(V*, B(m)) = 0 sauf si
n=d et m()> f(x) pour tout x # 0, c’est-a-dire si m € P Finalement, la
caractéristique d’Euler du complexe (6) est (— 1)4 si m € 18, et 0 sinon,
d’ou (5).

Lorsque P n’est plus supposé borné, mais ne contient aucune droite, on
peut trouver x € V* tel que le polyédre convexe P, = {p € P|x(p) < ¢t} soit
borné, et d’intérieur non vide, pour tout ¢ assez grand. De plus, P, est entier
pour une infinité de valeurs positives de #. En écrivant I’identité (4) pour P,
et en faisant tendre 7 vers + oo, on obtient (4) pour P. En sommant les séries,
on en déduit que

(-Die@) = ¥ o(fi-C)= ¥ x®(—P).

i el, Cjsaillant se®

En particulier, si P = C est un cbne saillant, alors € = {0} et (— l)d(I)(CQ)
= ®(— C) d’ou (ii). L’assertion (i) s’en déduit aussitdt, si P ne contient aucune
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. . . . . O
droite. l\élals si P contient une droite, alors P = m + }% pour un m € M,
d’ou ®(P) = 0. D’autre part, P n’a pas de sommet, donc (i) est triviale dans
ce cas. [J

FIGURE 2

De I’identité (ii) et du corollaire 2.1, suit aussitot le

COROLLAIRE. Pour tout céne C, et toute subdivision (0;);c; de son
cone dual, on a

o )= ¥ oCy,

i €l, C;saillant

ou C; estle cone dual de o;.

2.4. FONCTIONS CARACTERISTIQUES PONDEREES

Définition. Un poids o est la donnée, pour tout m € V et tout cone C,
d’un nombre réel w(m, C), tel que

w(m,C) =0 si x¢ C; r

w(m, C) ne dépend que de la face de m dans C;
w(—m, —C) = o@m, C).
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