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Puisque
1 — xmi= —xmi(l—x""),

on peut au besoin changer m; en —m;, et supposer que A(m;) > 0 pour
1 <i<n. Alors, si Z[[M]], désigne le sous-groupe de Z[[M]] formé des séries
a support dans le demi-espace ouvert (A>0), on a: p(C) el + Z[[M]]+,
donc

o(C) - [T A ~xm) el + Z[[M]].

i=1
ce qui contredit (1). [

Pour tout cébne C, on pose ®(C) = F(¢(C)); c’est un ¢élément de
S, 'Z[M].

Définissons un polyédre convexe entier P comme ’enveloppe convexe d’un
nombre fini de demi-droites entiéres, et de points de M; la fonction caracté-

ristique de P est ¢(P)= Y. x™. Nous verrons en 2.2 que ¢(P)
mePnM

e Z;(M), et que sa somme F(@(P)) = ©(P) s’exprime a ’aide des fonctions
caractéristiques des cOnes tangents aux sommets de P.

2. IDENTITES ENTRE FONCTIONS CARACTERISTIQUES

2.1 UN PROPRIETE D’ADDITIVITE
Définitions. Le cone dual d’un cone C de V est
C={reV*|A() =0, vxe C}.

C est un cone convexe polyédral de V'*, rationnel pour le réseau dual M* de
M. De plus, la codimension de C est la dimension de C N (- O), c’est-a-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est
saillant si et seulement si C est de dimension d.

Soit C un cdne de V, et (0;); < ; une subdivision de son c6ne dual c; alors
C = n C;ou C; est le cone dual de o;. Pour tout i € I, on se donne f; e M

iel

tel que f;| o, = f; quelle que soit la face c; de o; (on considére f; comme
fonction linéaire sur ;). Alors les f; se recollent en une fonction continue sur
o, linéaire par morceaux, a valeurs entiéres sur ¢ N M*. On dit que f est

convexesi f(a) + f(b) < f(a+ b) pour tous @, b dans o; cela signifie que pour
tout m € V, ’ensemble

A@m) ={x e o|mx) < f(x)}
est vide ou convexe.
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LEMME. Soient C et f comme précédemment. Si f est convexe,
alors pour tout me V:
y (= 1)codimio — 1 si m eir;(fi+ C)
iel,me fi+ C; 0 sinon .
Démonstration (voisine de [D], p. 564]. On considére les groupes de
cohomologie relative H”(c, A(m)) a coefficients rationnels. De la suite exacte
longue

- = H =1 (A(m)) = H(0, A(m)) > H"(0) = H"(A(m)) — -+

et de la convexité de o et de A(m), il résulte que H"(c, A(m)) = 0 pour tout
n > 2. De plus

0~ H(s, A(m)) ~ H(c) = H(A(m)) ~ H' (o, A(m)) > 0
et i est surjective, donc H'(c, A(m)) = 0. Enfin

H(c,Am) # 0 Am)=g em>=2fsuroeme f+C
et

H'(c, A(m)) = Q

dans ce cas. De méme, H"(o;, A(m) N ;) = 0 pour tout n > 1, et tout i € I.
Par suite, d’apres le théoréme de Leray (voir [G], corollaire au théoréme 5.2.4)
appliqué au recouvrement fermé ¢ = U o;, le groupe H"(c, A(m)) est le

iel
n-ieme groupe d’homologie du complexe
(2) o> @ H%,Am)no)— -

dim(c) = n

Puisque H%(o;, A(m) N o;) est égal & Q si me f; + C;, et & 0 sinon,
I’identité cherchée s’obtient en calculant la caractéristique d’Euler du
complexe (2). [

THEOREME (Ishida). Soient f et C comme précédemment. Si f
est convexe, alors o(n (fi + C)) € ZLy(M), et

iel

(N (fi+C)= Y Ofi+C).

iel ie€l,C;saillant

Démonstration. Montrons que

- (3) L (= DeimClg(fi+ C) = o(N (fi+ C)) .

iel iel
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En effet, pour tout m € M, les coefficients de x™ dans les deux membres de
(3) sont égaux d’apres le lemme. Pour conclure, on remarque que ¢ (f; + G;)
— x/ip(C)), et que F(@(C)) =0 si C; n’est pas saillant, ¢ ‘est-a-dire si

dim(c;)) <d. U
En prenant f = 0, on obtient le

COROLLAIRE. Pour tout cone C, et toute subdivision (c))ie; de son
cone dual, on a

®C)= L @)

i €I, C;saillant

ou C; estle cone dual de o;.

o
a1 2

03

FiGURE 1

Une subdivision du c6ne dual
2.2. POLYEDRES ET FONCTIONS D’APPUI

Afin de pouvoir appliquer le résultat qui précede aux fonctions caracté-
ristiques des polyeédres, nous allons rappeler brievement les liens entre les
polyeédres convexes et leur fonction d’appui; pour plus de détails, voir [O],
Appendix et [R], §§13 et 19.

Soit P un polyédre convexe entier dans V; nous allons lui associer une sub-
division d’un cOne de V*, et une fonction convexe en 2.1. Définissons la
fonction d’appui de P par

f:V¥*>{-o}UR

x— inf,cp x(p).
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