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Puisque

1 _ Xmi ~ Xmi(\ -X~mi)

on peut au besoin changer m, en — et supposer que \(irii) > 0 pour
1 ^ i ^ n. Alors, si Z[[M]] + désigne le sous-groupe de Z[[M]] formé des séries

à support dans le demi-espace ouvert (X>0), on a: cp(C) e 1 + Z[[M]]+,
donc

<P(Q • Û (l-^)e 1 + Z[[M]] +
I 1

ce qui contredit (1).

Pour tout cône C,on pose ®(C) ^(<p(C)); c'est un élément de

VZ[M1.
Définissons un polyèdre convexe entier comme l'enveloppe convexe d'un

nombre fini de demi-droites entières, et de points de M; la fonction caractéristique

de P est (p (P)Y, x"' Nous verrons en 2.2 que <pfP)
m e P n M

e S'di.M), et que sa somme 9"(<${P))<&(P) s'exprime à l'aide des fonctions

caractéristiques des cônes tangents aux sommets de P.

2. Identités entre fonctions caractéristiques

2.1 Un propriété d'additivité

Définitions. Le cône dual d'un cône C de F est

C={Ie V*|L(x) >0, Vx e C}
v
C est un cône convexe polyédral de V*, rationnel pour le réseau dual M* de

V

M. De plus, la codimension de Cest la dimension de C n (- C), c'est-à-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est

V

saillant si et seulement si C est de dimension d.

Soit C un cône de F, et (oz)î e/ une subdivision de son cône dual o; alors
C n Ci où Ci est le cône dual de G/. Pour tout i e /, on se donne e M

i e I
tel que \ oy fj quelle que soit la face oy de o, (on considère ft comme
fonction linéaire sur a,-). Alors les fi se recollent en une fonction continue sur

o, linéaire par morceaux, à valeurs entières sur g n M*. On dit que / est

convexe si f (a) + /(b) < f(a + b) pour tous a, b dans o ; cela signifie que pour
tout m e V, l'ensemble

A (m) {x e g | m{x) < f{x)}
est vide ou convexe.
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Lemme. Soient C et f comme précédemment. Si f est convexe,
alors pour tout m e V:

^ f 1 si m e n (fi + Q)l l)codim(oJ) _ I

i e I, m e /,• + C, [ 0 6772072

Démonstration (voisine de [D], p. 564]. On considère les groupes de

cohomologie relative Hn(o, A(m)) à coefficients rationnels. De la suite exacte

longue

• • • -> Hn~l {A{m)) -> Hn(o,A(m)) -» Hn(o) i-> Hn{A{m)) -* • • •

et de la convexité de o et de A (m), il résulte que Hn(o, A (m)) 0 pour tout
n ^ 2. De plus

0 H°(a, A (m)) - H°(g) ^ H°(A (m)) -> H1(g, A (m)) -+ 0

et / est surjective, donc H1 (g, A (m)) 0. Enfin

H°(g, A(m)) A (m) 0^wi)/surö^wie/+C
et

H°(g, A (m)) Q

dans ce cas. De même, Hn(ci,A(m) n oz) 0 pour tout n ^ 1, et tout i e I.
Par suite, d'après le théorème de Leray (voir [G], corollaire au théorème 5.2.4)
appliqué au recouvrement fermé o u oz le groupe Hn(o, A(m)) est le

i e /
72-ième groupe d'homologie du complexe

(2) •••->© H°(qi9A(m) n g,-) - • • •

dim (a) - «

Puisque //°(o/, ^4(ra) n oz) est égal à Q si m e ft + C,, et à 0 sinon,
l'identité cherchée s'obtient en calculant la caractéristique d'Euler du

complexe (2).

Théorème (Ishida). Soient f et C comme précédemment. Si f
est convexe, alors cp( n (/• + C/)) e &d{M),

i e I

<D(n (/ + C,)) S ®<//+c,).
/il / e /, Cisaillant

Démonstration. Montrons que

(3) I (- + q>(n (/ + C,))
/e 7 f e /
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En effet, pour tout m e M, les coefficients de xm dans les deux membres de

(3) sont égaux d'après le lemme. Pour conclure, on remarque que cp (/• 4- C,)

jt-f'cp(Ci), et que 5^(cp(C/)) 0 si C, n'est pas saillant, c est-à-dire si

dim(o/) < d.

En prenant / 0, on obtient le

Corollaire. Pour tout cône C, et toute subdivision (of), e / de son

cône dual, on a

®cc) E o(c,)
/ e /, Cisaillant

2.2. Polyèdres et fonctions d'appui

Afin de pouvoir appliquer le résultat qui précède aux fonctions
caractéristiques des polyèdres, nous allons rappeler brièvement les liens entre les

polyèdres convexes et leur fonction d'appui; pour plus de détails, voir [O],
Appendix et [R], §§13 et 19.

Soit P un polyèdre convexe entier dans V; nous allons lui associer une
subdivision d'un cône de V*, et une fonction convexe en 2.1. Définissons la

fonction d'appui de P par

/: V* -+{- oo} u R

inf pePx(p)
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Soit g l'ensemble des x e V* tels que f{x)^ - oo. C'est un cône, et

/(x) min5 6 ^ x(s) pour tout x e o, où % est l'ensemble des sommets de P.
Pour toute face F de P, on note PF l'ensemble des t(-f + p) où f e F,
te R+ et p e P; c'est un cône, dont on note aF le cône dual. Remarquons
que PF n {- PF) est la direction du sous-espace affine engendré par F; en

particulier, PF est saillant si et seulement si F se réduit à un sommet. On
vérifie sans peine que la famille des cFi F face de P, est une subdivision de

o, avec les gs,se comme cônes de dimension maximale. De plus,

f \gs s pour tout 5 e f, et P n (s + Ps) si P ne contient aucune
Î6droite.

Réciproquement, soit (o/)/e/ une subdivision d'un cône o de V*. Pour
tout / e /, soit fi e M, tel que f \ Gj f si oy est une face de oz. On suppose

que la fonction /, obtenue par recollement des f, est strictement convexe,
c'est-à-dire que / (a) + fib) < f(a + b) chaque fois que a, b appartiennent à

des cônes distincts de la subdivision. Alors P n (/i+O/) est un polyèdre
i e /

convexe entier, ayant pour sommets les f tels que la dimension de oz soit

maximale, et pour fonction d'appui /. De 2.1 suit donc le

Théorème. Soient P un polyèdre convexe entier, et % l'ensemble de

ses sommets. Alors

<K(P) X x*<D(Ps)
sel

où Ps est le cône engendré par - s + P.

2.3. Fonctions caractéristiques de polyèdres ouverts
o

Pour tout convexe C de V, on note C son intérieur relatif, c'est-à-dire

l'intérieur de C dans l'espace affine qu'il engendre.

Théorème, (i) Pour tout polyèdre convexe entier P, on a:
cp(P) e et

<D(P) £ x*<D(P,)

avec les notations ci-dessus.
o

(ii) Pour tout cône saillant C, o« a: (p(C) e Sfd(M), et

<Ï>(C) (- l)dim(C)<£(_ Q

ow - C est le cône opposé à C.
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Démonstration. On peut supposer que P engendre V. On associe à P sa

fonction d'appui /, et une subdivision (oz)z 6 / de o comme en 2.2. Supposons

d'abord que P est borné; alors o V*. Montrons que

(4) £ (- i)codim(°/)cpC/; - Ci) (- i)"<p(P),
i g I

où on pose C, o,. Comme en 2.1, il suffit de montrer que
O

(-1)^ si m e P
(5) S (~ l)codim(°/)

i e I,m e fi - Ct 0 sinon

On pose B(m) {x e V* \ m(x)>f{x)}et on considère les groupes de

cohomologie H"(V*,B{m)).Puisque/ est linéaire sur chaque a,, l'ensemble

o, n B(m) est vide ou convexe, d'où comme en 2.1: H"(cj, n a,) 0

pour tout n^1. Par suite, B(m)) est le n-ième groupe de

cohomologie du complexe

(6) •••—+© H°(oi, B(m) no,)-» • • •

dim(a/) n

De plus, H°(oi,B(m) n o,) est égal à Q si m < / sur oz, c'est-à-dire si

m e fi - Ci; et à 0 sinon. D'autre part, on a:

Hn(V*, B(m)) Hdc~n(V*\B(m))

par dualité d'Alexander. De plus, puisque V*\B(m) {x e V* | m(x)

< f(pc)} est un cône convexe fermé de V*, on a: Hlc{V*\B(m)) 0 pour
tout i ^ 0, sauf si V*\B(m) {0} et / 0. D'où //"(F*, B(m)) 0 sauf si

o
n d et m(x) > f(x) pour tout x 0, c'est-à-dire si m e P. Finalement, la

caractéristique d'Euler du complexe (6) est (-1)^ si m e P, et 0 sinon,
d'où (5).

Lorsque P n'est plus supposé borné, mais ne contient aucune droite, on

peut trouver x e V* tel que le polyèdre convexe Pt {p e P | x(p) ^ tj soit
borné, et d'intérieur non vide, pour tout t assez grand. De plus, Pt est entier

pour une infinité de valeurs positives de t. En écrivant l'identité (4) pour Pt
et en faisant tendre t vers + oo, on obtient (4) pour P. En sommant les séries,

on en déduit que

(- i)"<h(P) £ <&(/,- £ x'Qi-Ps).
i g I, Ci saillant sg I

En particulier, si P C est un cône saillant, alors ^ {0} et (- l)^O(C)
0( - C) d'où (ii). L'assertion (i) s'en déduit aussitôt, si P ne contient aucune
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o o
droite. Mais si P contient une droite, alors P m + P pour un m e M,

o
d'où O(P) 0. D'autre part, P n'a pas de sommet, donc (i) est triviale dans

ce cas.

De l'identité (ii) et du corollaire 2.1, suit aussitôt le

Corollaire. Pour tout cône C, et toute subdivision (Oi)iei de son

cône dual, on a

o(c) L 9(ê,),
i e I, Ci saillant

où Ci est le cône dual de g,

2.4. Fonctions caractéristiques pondérées

Définition. Un poids co est la donnée, pour tout m e V qt tout cône C,

d'un nombre réel co(m, C), tel que

co (m, C) 0 si x$ C;

co (m, C) ne dépend que de la face de m dans C;

co( — m, - C) - co (m, C).
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Si F est une face de C, on pose (o(F, C) co(m, C) où m est un point
o

quelconque de F.
Pour tout poids co, on définit son poids dual co* par

co*(m,C) S (-l)codim(F)co(F, C)
m e F

(somme sur toutes les faces de C qui contiennent m).

Proposition. Pour tout poids co, on a: co** co.

Démonstration. Soit m e C; alors

co**(/w, C)= S (-l)codim^co*(F, C)
m e F

_ ^ ijcodimOF) + codimCF'jQj^/T'?
m e F C F'

Mais pour toute face F' de C, on a

(- l)codim(F') si p' QS1 }a face de m

0 sinon ;

en effet, grâce au théorème 2.3 (ii):

^ ^ 2 ^ codim (F) 4>(i0 (- l)d Z O(-F) (-l)rf<E>(-F')
F C F' F C F'

— J) codim (F')

d'où (7) Par suite, on a co**(m, C) co(F", C) où F' est la face de m.

Exemples.

(i) Soit x le poids défini par %{m,C)

(7) Yé (-l)codim^
m e F C F'

1 si m e C

0 sinon

Alors

1 si m e C
X*(m, C)

0 sinon

(ii) On suppose V euclidien. Notons S (m, s) la sphère de centre m, de

rayon c > 0. Pour s assez petit, le rapport qOS(ra, s) n C)/\i(S(m, s)) (où q
est la mesure de Lebesgue sur S (m, s)) ne dépend pas de s; notons-le a {m, C).
Ce nombre mesure l'angle sous lequel on voit C depuis la face de m. D'après
un résultat de Brianchon et Gram (voir [PS]) on a

a* a
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Soit co un poids. Pour tout polyèdre convexe P, et tout m e V, on pose
co(m, P) co(0, PF) où F est la face de m dans P, et PF est le cône formé des

+ p),f e F, t e R+ ,p e P (voir 2.2). On définit

<P® (P)E Mm, P)xm e R[[M]]
m e P n M

Alors (px cp où x est comme dans l'exemple (i). De plus, pour tout poids co,

on a

<MP) E P)<p(F)
F

(somme sur toutes les faces F de P). Donc cpcö(P) e ^d(M) d'après 2.3. On

pose Oœ(P) ^(<pœ(P)).

Théorème, (i) Pour tout polyèdre convexe entier P, on a

®JP) E 3>œ(^)

ow ^ est l'ensemble de sommets de P, P5 est le cône engendré par
- s y P.

(ii) Pour tout cône C, on a

Oco(C) (-1)Ow*(-C)
Démonstration, (i) On a, d'après le théorème 2.3,

<S>JP) E ®(F, P) 4>(F) E P) E W)
F F s e

où est l'ensemble des sommets de la face F. D'où

ow(P) E E ®(f, p) <&(£)) E <M^) •

s e £ F s s je?

(ii) On a de même

<MC) E MF, C)<Ï>(F) E (- l)dimWco(F, C)<D(-F)
F F

E (— l)dim(/7|(X>(F, C)<E>( —F')
F' C F

(_ l)dim(C) E) E (- l)COdim(/r)(0(P, C))<D(-F')
F' F J F'

(- l)dim<c> E <û*(F',C)<ï>(-F')
F'

(_ l)dta(C)4,<o:f(_C)
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