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Puisque
1 — xmi= —xmi(l—x""),

on peut au besoin changer m; en —m;, et supposer que A(m;) > 0 pour
1 <i<n. Alors, si Z[[M]], désigne le sous-groupe de Z[[M]] formé des séries
a support dans le demi-espace ouvert (A>0), on a: p(C) el + Z[[M]]+,
donc

o(C) - [T A ~xm) el + Z[[M]].

i=1
ce qui contredit (1). [

Pour tout cébne C, on pose ®(C) = F(¢(C)); c’est un ¢élément de
S, 'Z[M].

Définissons un polyédre convexe entier P comme ’enveloppe convexe d’un
nombre fini de demi-droites entiéres, et de points de M; la fonction caracté-

ristique de P est ¢(P)= Y. x™. Nous verrons en 2.2 que ¢(P)
mePnM

e Z;(M), et que sa somme F(@(P)) = ©(P) s’exprime a ’aide des fonctions
caractéristiques des cOnes tangents aux sommets de P.

2. IDENTITES ENTRE FONCTIONS CARACTERISTIQUES

2.1 UN PROPRIETE D’ADDITIVITE
Définitions. Le cone dual d’un cone C de V est
C={reV*|A() =0, vxe C}.

C est un cone convexe polyédral de V'*, rationnel pour le réseau dual M* de
M. De plus, la codimension de C est la dimension de C N (- O), c’est-a-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est
saillant si et seulement si C est de dimension d.

Soit C un cdne de V, et (0;); < ; une subdivision de son c6ne dual c; alors
C = n C;ou C; est le cone dual de o;. Pour tout i € I, on se donne f; e M

iel

tel que f;| o, = f; quelle que soit la face c; de o; (on considére f; comme
fonction linéaire sur ;). Alors les f; se recollent en une fonction continue sur
o, linéaire par morceaux, a valeurs entiéres sur ¢ N M*. On dit que f est

convexesi f(a) + f(b) < f(a+ b) pour tous @, b dans o; cela signifie que pour
tout m € V, ’ensemble

A@m) ={x e o|mx) < f(x)}
est vide ou convexe.
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LEMME. Soient C et f comme précédemment. Si f est convexe,
alors pour tout me V:
y (= 1)codimio — 1 si m eir;(fi+ C)
iel,me fi+ C; 0 sinon .
Démonstration (voisine de [D], p. 564]. On considére les groupes de
cohomologie relative H”(c, A(m)) a coefficients rationnels. De la suite exacte
longue

- = H =1 (A(m)) = H(0, A(m)) > H"(0) = H"(A(m)) — -+

et de la convexité de o et de A(m), il résulte que H"(c, A(m)) = 0 pour tout
n > 2. De plus

0~ H(s, A(m)) ~ H(c) = H(A(m)) ~ H' (o, A(m)) > 0
et i est surjective, donc H'(c, A(m)) = 0. Enfin

H(c,Am) # 0 Am)=g em>=2fsuroeme f+C
et

H'(c, A(m)) = Q

dans ce cas. De méme, H"(o;, A(m) N ;) = 0 pour tout n > 1, et tout i € I.
Par suite, d’apres le théoréme de Leray (voir [G], corollaire au théoréme 5.2.4)
appliqué au recouvrement fermé ¢ = U o;, le groupe H"(c, A(m)) est le

iel
n-ieme groupe d’homologie du complexe
(2) o> @ H%,Am)no)— -

dim(c) = n

Puisque H%(o;, A(m) N o;) est égal & Q si me f; + C;, et & 0 sinon,
I’identité cherchée s’obtient en calculant la caractéristique d’Euler du
complexe (2). [

THEOREME (Ishida). Soient f et C comme précédemment. Si f
est convexe, alors o(n (fi + C)) € ZLy(M), et

iel

(N (fi+C)= Y Ofi+C).

iel ie€l,C;saillant

Démonstration. Montrons que

- (3) L (= DeimClg(fi+ C) = o(N (fi+ C)) .

iel iel
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En effet, pour tout m € M, les coefficients de x™ dans les deux membres de
(3) sont égaux d’apres le lemme. Pour conclure, on remarque que ¢ (f; + G;)
— x/ip(C)), et que F(@(C)) =0 si C; n’est pas saillant, ¢ ‘est-a-dire si

dim(c;)) <d. U
En prenant f = 0, on obtient le

COROLLAIRE. Pour tout cone C, et toute subdivision (c))ie; de son
cone dual, on a

®C)= L @)

i €I, C;saillant

ou C; estle cone dual de o;.

o
a1 2

03

FiGURE 1

Une subdivision du c6ne dual
2.2. POLYEDRES ET FONCTIONS D’APPUI

Afin de pouvoir appliquer le résultat qui précede aux fonctions caracté-
ristiques des polyeédres, nous allons rappeler brievement les liens entre les
polyeédres convexes et leur fonction d’appui; pour plus de détails, voir [O],
Appendix et [R], §§13 et 19.

Soit P un polyédre convexe entier dans V; nous allons lui associer une sub-
division d’un cOne de V*, et une fonction convexe en 2.1. Définissons la
fonction d’appui de P par

f:V¥*>{-o}UR

x— inf,cp x(p).
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Soit ¢ I’ensemble des x € V* tels que f(x) # — . C’est un cOne, et
JS(xX) = min, . ¢ x(s) pour tout x € ¢, ou ¥ est I’ensemble des sommets de P.
Pour toute face F de P, on note P ’ensemble des ¢(—f+p) ou f € F,
t e R, et p e P; C’est un cdne, dont on note 6y le cone dual. Remarquons
que Pr N (— Pr) est la direction du sous-espace affine engendré par F; en
particulier, Pr est saillant si et seulement si F se réduit & un sommet. On
vérifie sans peine que la famille des o, F face de P, est une subdivision de
c, avec les o,,5 € 4, comme cbnes de dimension maximale. De plus,
flos=s pour tout se %, et P= n (s + Py) si P ne contient aucune

se %

droite.

Réciproquement, soit (6;);; une subdivision d’un coéne ¢ de V*. Pour
tout i € I, soit f; € M, tel que f; | 6, = f; si o; est une face de o;. On suppose
que la fonction f, obtenue par recollement des f;, est strictement convexe,
c’est-a-dire que f(a) + f(b) < f(a + b) chaque fois que a, b appartiennent a
des cones distincts de la subdivision. Alors P = n (fi+ 6;) est un polyédre

iel
convexe entier, ayant pour sommets les f; tels que la dimension de o; soit
maximale, et pour fonction d’appui f. De 2.1 suit donc le

THEOREME. Soient P un polyédre convexe entier, et % [’ensemble de
ses sommets. Alors

O(P) = ), X ()

se €

ou P, est le cone engendré par — s + P.

2.3. FONCTIONS CARACTERISTIQUES DE POLYEDRES OUVERTS

O
Pour tout convexe C de V, on note C son intérieur relatif, c’est-a-dire

I’intérieur de C dans ’espace affine qu’il engendre.

THEOREME. (i) Pour tout polyédre convexe entier P, on a:
O
O(P) € Zy(M), et

o) = ¥ x0(P,)

se

avec les notations ci-dessus.
O
(ii) Pour tout céne saillant C, on a: ¢(C) € ZLy(M), et

®(C) = (— 1)4m OB (- C)

- ou — C estle cone opposé a C.
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Démonstration. On peut supposer que P engendre V. On associe a P sa
fonction d’appui f, et une subdivision (6;);  ; de 6 comme €n 2.2. Supposons
d’abord que P est borné; alors ¢ = V*. Montrons que

. O
(4) Y, (= hedm@do(f; — C) = (= D9 (P) ,

iel
ou on pose C; = 6;. Comme en 2.1, il suffit de montrer que

(= D? si me P

0 sinon .

(5) Z (— 1)codim(o,-) — {
iel,me fi— Cj
On pose B(m) = {x e V*|m(x) > f(x)} et on considére les groupes de
cohomologie H"(V*, B(m)). Puisque f est linéaire sur chaque o;, I’ensemble
6, N B(m) est vide ou convexe, d’ott comme en 2.1: H"(c;, B(m) N 6;) =0
pour tout n > 1. Par suite, H"(V*, B(m)) est le n-iéme groupe de coho-
mologie du complexe

(6) o> @ Hoi,,B(m)no)—

dim(c;) = n
De plus, H°(c;, B(m) N o;) est égal & Q si m < f sur o;, C’est-a-dire si
m € f; — C;; et a 0 sinon. D’autre part, on a:

H~(V*, B(m)) = H'™"(V*\B(m))

par dualité d’Alexander. De plus, puisque V*\B(m) = {xe V* | m(x)
< f(x)} est un cone convexe fermé de V*, on a: Hﬁ,(V*\B(m)) = 0 pour
tout i > 0, sauf si V¥\B(m) = {0} eti = 0. D’ou H"(V*, B(m)) = 0 sauf si
n=d et m()> f(x) pour tout x # 0, c’est-a-dire si m € P Finalement, la
caractéristique d’Euler du complexe (6) est (— 1)4 si m € 18, et 0 sinon,
d’ou (5).

Lorsque P n’est plus supposé borné, mais ne contient aucune droite, on
peut trouver x € V* tel que le polyédre convexe P, = {p € P|x(p) < ¢t} soit
borné, et d’intérieur non vide, pour tout ¢ assez grand. De plus, P, est entier
pour une infinité de valeurs positives de #. En écrivant I’identité (4) pour P,
et en faisant tendre 7 vers + oo, on obtient (4) pour P. En sommant les séries,
on en déduit que

(-Die@) = ¥ o(fi-C)= ¥ x®(—P).

i el, Cjsaillant se®

En particulier, si P = C est un cbne saillant, alors € = {0} et (— l)d(I)(CQ)
= ®(— C) d’ou (ii). L’assertion (i) s’en déduit aussitdt, si P ne contient aucune
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. . . . . O
droite. l\élals si P contient une droite, alors P = m + }% pour un m € M,
d’ou ®(P) = 0. D’autre part, P n’a pas de sommet, donc (i) est triviale dans
ce cas. [J

FIGURE 2

De I’identité (ii) et du corollaire 2.1, suit aussitot le

COROLLAIRE. Pour tout céne C, et toute subdivision (0;);c; de son
cone dual, on a

o )= ¥ oCy,

i €l, C;saillant

ou C; estle cone dual de o;.

2.4. FONCTIONS CARACTERISTIQUES PONDEREES

Définition. Un poids o est la donnée, pour tout m € V et tout cone C,
d’un nombre réel w(m, C), tel que

w(m,C) =0 si x¢ C; r

w(m, C) ne dépend que de la face de m dans C;
w(—m, —C) = o@m, C).
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Si F est une face de C, on pose o(F, C) = o(m, C) ou m est un point
O
quelconque de F.
Pour tout poids ®, on définit son poids dual w* par

o*(m,C) = ) (- H*Oa(F, C)

mekF

(somme sur toutes les faces de C qui contiennent m).

PROPOSITION. Pour tout poids ®, on a: o** = o.

Démonstration. Soit m € C; alors

w**(m, C) = Z [ l)codim(mw*(F’ 0)

mekF

— E (_ 1)codim(F)+codim(F’)w(Fl’ C) )

meFCF’

Mais pour toute face F’ de C, on a

(— 1)codimF) si  F’ est la face de m

™ Y (=i = {

meFCF' 0 sinon ;

en effet, grace au théoréme 2.3 (ii):

Y (- )=mOQF) = (D! L O(~F) = (- DD(~F)

FCF’ FCF'
— (_ l)codim(F’)q)(]g") ,
d’ou (7) . Par suite, on a o**(m, C) = o(F’, C) ou F’ est la face de m.

Exemples.

1 si C
() Soit x le poids défini par x(m, C) = { sim e
0 sinon .

Alors

1 sime 5
x*(m, C) = .
0 sinon .

(ii) On suppose V euclidien. Notons S(m, €) la spheére de centre m, de
rayon € > 0. Pour ¢ assez petit, le rapport w(S(@m, €) N C)/u(S(m, €)) (ou p
est la mesure de Lebesgue sur S(m, €)) ne dépend pas de €; notons-le a(m, C).
Ce nombre mesure I’angle sous lequel on voit C depuis la face de m. D’aprés
un résultat de Brianchon et Gram (voir [PS]) on a

o* = a .
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Soit @ un poids. Pour tout polyédre convexe P, et tout m € V, on pose
o(m, P) = (0, Pr) ou F est la face de m dans P, et Py est le cOne formé des
I(=f+p),feF,teR,,peP (voir 2.2). On définit

0(P)= Y o, P)x"eR[M]] .

mePnNnM

Alors @, = @ ou y est comme dans ’exemple (i). De plus, pour tout poids ®,
on a

0o(P) = ¥ o(F, P)o(F)

F

(somme sur toutes les faces F' de P). Donc ¢,(P) € Z,(M) d’apres 2.3. On
pose @,(P) = F(9,(P)).

THEOREME. (1) Pour tout polyedre convexe entier P, on a

q)(o(P) = E??(Dw(Ps) >

ou % est I’ensemble de sommets de P, et P, estle cOne engendré par
-5+ P.

(i) Pour tout come C, on a
D, (C) = (= DO, (- C) .
Démonstration. (i) On a, d’apres le théoréme 2.3,

0,(P) = ¥ o(F,P)O(F) = ¥ o(F,P) ¥ ®F,),

F F se %p
ou &r est ’ensemble des sommets de la face F. D’ou

o,P)= L (L oF,P)BEF,)) = ¥ ®,(P,) .

se€ Fos se %
(i1)) On a de méme

0,(C) = ¥ o(F, O)OF) = ¥ (- DInPo(F, C) (- F)
F

F

= T (- IO F, O)0(~ F)

F'CF

= (— l)dim(C) E ( Z (_ l)COdim(F)Q)(F, C))(I)(_Igz)

F' FDOF'

= (= 1)dim(©) Z o*(F’, C)(D(—ﬁ’)
&=

= (- 1)ImOP (-C). [
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