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Soit S le sous-ensemble de Z [M] formé des produits finis d'éléments de la

forme 1 - xm,m e M\{0}. On note S~lZ[M] le sous-anneau du corps des

fractions de Z [M], formé des s~lu où u e Z[M] et s e S. Enfin, on note

S?(M) l'ensemble des u e Z[[M]\ tels que S • u rencontre Z [M] ; c'est un sous-

Z [M]-module de Z [[M]].
Pour tout entier p ^ 0, on note le sous-ensemble de 5 formé des

produits d'au plus p éléments de la forme 1 - xm, m e M\{0}. On définit de

façon évidente S~XZ[M] et 2P(M).

Proposition. Il existe un unique Z[M]-morphisme

2: 2(M)~^ S~lZ\M]

tel que 2(u) u pour tout u e Z [M]. De plus, SF(2P(M)) C S~XZ[M]

pour tout entier p ^ 0.

Démonstration. Soit u e &P(M). Choisissons s e Sp tel que

v s - u e Z [M], et posons 9"(u) s~xv e S~lZ[M]. On vérifie immédiatement

que 9*(u) ne dépend pas du choix de et que 5^ convient.

On appelle 5^(tu) la somme de la série formelle u e 2?(M). Par exemple,

pour tout m e M\{0}, on a:

1.2. Fonctions caractéristiques de cônes et polyèdres

Définitions. Une demi-droite ô de V est entière si son origine m est un
point de M, et si ô \ {m} rencontre M. Un cône (convexe, rationnel, polyédral)
est l'enveloppe convexe d'un nombre fini de demi-droites entières, de même

origine O. Le cône C est saillant s'il ne contient aucune droite, et simplicial
s'il est enveloppe convexe de demi-droites dont les directions sont linéairement
indépendantes.

Une subdivision du cône C est une famille (C/)/e/ de cônes saillants telle

que:

C u Cil

2 (1 - xm) ~1 et

i e I

si F est une face de C/, alors F Q pour un j e /;
l'intersection Cz- n Cj est une face de Cz et de C7
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La fonction caractéristique d'un cône C est l'élément

(p(c) Y,
m e C n M

de Z[[M]]. Remarquons que C est uniquement déterminé par (p(C); en effet,
C est l'enveloppe convexe du support de (p(C).

Proposition. Pour tout cône C, on a: q>(C) e 5i(M). Déplus, C
est saillant si et seulement si (p(C) ^ 0.

Démonstration. Traitons d'abord le cas où C est simplicial. Soient

Ôi, ô„ ses arêtes. Pour 1 ^ < a, le monoïde 6/ n M a un unique géné-
n

rateur mt. Tout élément de C s'écrit de façon unique Y (xt + yi)mt où
i 1

n

Xt e N, 0 < yj < 1 et Y yjmj e C. Par suite, si Pc désigne l'ensemble des

j= i
n

Y yjfrij avec 0 < < 1 pour 1 ^j^n, alors
j i

n

(p(c)- n (i-*«o= i/ 1 me Pc ^ M

et de plus Pc n M est fini, donc C e 2n(M) C &d(M).
Dans le cas général, on choisit une subdivision (C/)/ e/ de C en cônes

simpliciaux. Alors

<P(C) E Cp(Ci) - £ (P(Ci n Cj) + Y, <P(C; n Cj n ~i i,j i,j, k

est une somme alternée de fonctions caractéristiques de cônes simpliciaux,
donc cp(C) e ^d{M).

Pour la seconde assertion, supposons d'abord que C n'est pas saillant. Il
existe alors m eM\{0} tel que Rm C C. Par suite, C m + C d'où
(1 -xm)y(C) 0, et S^((p(C)> 0.

Réciproquement, supposons C saillant, et montrons que .5^((p(C)) 0.

Sinon, soient mlf mn dans M\{0} tels que

n

(1) <P(CJ- n (l-xmO 0.
I 1

D'après le théorème de Hahn-Banach, l'ensemble des formes linéaires X sur

V, telles que X(p) > 0 pour tout p e C\{0}, est un ouvert non vide du dual

V* de V. Par suite, on peut trouver un tel X avec Xfjni) ^ 0 pour 1 ^ / < n.
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Puisque

1 _ Xmi ~ Xmi(\ -X~mi)

on peut au besoin changer m, en — et supposer que \(irii) > 0 pour
1 ^ i ^ n. Alors, si Z[[M]] + désigne le sous-groupe de Z[[M]] formé des séries

à support dans le demi-espace ouvert (X>0), on a: cp(C) e 1 + Z[[M]]+,
donc

<P(Q • Û (l-^)e 1 + Z[[M]] +
I 1

ce qui contredit (1).

Pour tout cône C,on pose ®(C) ^(<p(C)); c'est un élément de

VZ[M1.
Définissons un polyèdre convexe entier comme l'enveloppe convexe d'un

nombre fini de demi-droites entières, et de points de M; la fonction caractéristique

de P est (p (P)Y, x"' Nous verrons en 2.2 que <pfP)
m e P n M

e S'di.M), et que sa somme 9"(<${P))<&(P) s'exprime à l'aide des fonctions

caractéristiques des cônes tangents aux sommets de P.

2. Identités entre fonctions caractéristiques

2.1 Un propriété d'additivité

Définitions. Le cône dual d'un cône C de F est

C={Ie V*|L(x) >0, Vx e C}
v
C est un cône convexe polyédral de V*, rationnel pour le réseau dual M* de

V

M. De plus, la codimension de Cest la dimension de C n (- C), c'est-à-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est

V

saillant si et seulement si C est de dimension d.

Soit C un cône de F, et (oz)î e/ une subdivision de son cône dual o; alors
C n Ci où Ci est le cône dual de G/. Pour tout i e /, on se donne e M

i e I
tel que \ oy fj quelle que soit la face oy de o, (on considère ft comme
fonction linéaire sur a,-). Alors les fi se recollent en une fonction continue sur

o, linéaire par morceaux, à valeurs entières sur g n M*. On dit que / est

convexe si f (a) + /(b) < f(a + b) pour tous a, b dans o ; cela signifie que pour
tout m e V, l'ensemble

A (m) {x e g | m{x) < f{x)}
est vide ou convexe.
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