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Soit S le sous-ensemble de Z[M] formé des produits finis d’éléments de la
forme 1 — x™, m € M\{0}. On note S~'Z[M] le sous-anneau du corps des
fractions de Z[M], formé des s~'u ou u € Z[M] et 5 € S. Enfin, on note
(M) ’ensemble des u € Z[[M]] tels que S - u rencontre Z[M]; c’est un sous-
Z[M]-module de Z[[M]].

Pour tout entier p > 0, on note S, le sous-ensemble de S formé des
produits d’au plus p éléments de la forme 1 — x™,m e M \{0}. On définit de
facon évidente S, 'Z[M] et Z,(M).

PROPOSITION. I/ existe un unique Z[M]-morphisme
& LM) —~ S VL[M]

tel que F(u) = u pour tout u € Z[M]. De plus, S (Z,(M)) C S, ' Z[M]
pour tout entier p = 0.

Démonstration. Soit u e Z,(M). Choisissons se€S§, tel que
v=s-uecZ[M], et posons F(u) =s e S~ 'Z[M]. On vérifie immédia-
tement que & (u) ne dépend pas du choix de s, et que & convient. [

On appelle &(u) la somme de la série formelle u € & (M). Par exemple,
pour tout m € M\{0}, on a:

n=20

= — ®

S/(f’,x’””)=(1—x’”)‘1 et Sﬂ( i x"’”)zo.

1.2. FONCTIONS CARACTERISTIQUES DE CONES ET POLYEDRES

Définitions. Une demi-droite § de V est entiére si son origine m est un
point de M, et si 6 \{m} rencontre M. Un cdne (convexe, rationnel, polyédral)
est ’enveloppe convexe d’un nombre fini de demi-droites entiéres, de méme
origine O. Le cOne C est saillant s’il ne contient aucune droite, et simplicial
s’il est enveloppe convexe de demi-droites dont les directions sont linéairement
indépendantes.

Une subdivision du cone C est une famille (C;); .; de cOnes saillants telle
que:

C= v C;

el
si F est une face de C;, alors F = C; pour un j € [;

Pintersection C; n C; est une face de C; et de C;.
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La fonction caractéristique d’un co6ne C est I’élément

e(C)= Y x~m
meCnM
de Z[[M]]. Remarquons que C est uniquement déterminé par ¢(C); en effet,
C est I’enveloppe convexe du support de ¢(C).

PROPOSITION. Pour tout cone C, ona: ¢o(C)e Zy(M). De plus, C
est saillant si et seulement si @(C) # 0.

Démonstration. Traitons d’abord le cas ou C est simplicial. Soient
Oy, ..., 0, ses arétes. Pour 1 < i < n, le monoide §; N M a un unique géné-

n

rateur m;. Tout élément de C s’écrit de facon unique Y, (x;+y)m; ou

i=1

n
xeN, 0y <1 et Z y;m; € C. Par suite, si Pc désigne ’ensemble des
Jj=1

n
Y, yym; avec 0 < y; < 1 pour 1 <j < n, alors
=1

o) [[A—xm)= ¥ xm
i=1 mePcn M
et de plus Pc n M est fini, donc C € Z,(M) C Z,(M).
Dans le cas général, on choisit une subdivision (C;);; de C en cOnes
simpliciaux. Alors
PC) = L oC)— L olCnCh+ Y o(C:inCinCy) — -+
i i,J i,j, k
est une somme alternée de fonctions caractéristiques de coOnes simpliciaux,
donc @ (C) € Z;(M).

Pour la seconde assertion, supposons d’abord que C n’est pas saillant. Il
existe alors m € M\{0} tel que Rm C C. Par suite, C=m + C d’ou
(1 —xm)e(C) =0, et H(o(C)) = 0.

Réciproquement, supposons C saillant, et montrons que “(@(C)) # 0.
Sinon, soient my, ..., m, dans M\ {0} tels que

(1) o) [ @ ~xm)=0.

i=1
D’aprés le théoréme de Hahn-Banach, ’ensemble des formes linéaires A sur
V, telles que A(p) > 0 pour tout p € C\{0}, est un ouvert non vide du dual
V* de V. Par suite, on peut trouver un tel A avec A(m;) # 0 pour 1 < i < n.



POLYEDRES ET RESEAUX 75

Puisque
1 — xmi= —xmi(l—x""),

on peut au besoin changer m; en —m;, et supposer que A(m;) > 0 pour
1 <i<n. Alors, si Z[[M]], désigne le sous-groupe de Z[[M]] formé des séries
a support dans le demi-espace ouvert (A>0), on a: p(C) el + Z[[M]]+,
donc

o(C) - [T A ~xm) el + Z[[M]].

i=1
ce qui contredit (1). [

Pour tout cébne C, on pose ®(C) = F(¢(C)); c’est un ¢élément de
S, 'Z[M].

Définissons un polyédre convexe entier P comme ’enveloppe convexe d’un
nombre fini de demi-droites entiéres, et de points de M; la fonction caracté-

ristique de P est ¢(P)= Y. x™. Nous verrons en 2.2 que ¢(P)
mePnM

e Z;(M), et que sa somme F(@(P)) = ©(P) s’exprime a ’aide des fonctions
caractéristiques des cOnes tangents aux sommets de P.

2. IDENTITES ENTRE FONCTIONS CARACTERISTIQUES

2.1 UN PROPRIETE D’ADDITIVITE
Définitions. Le cone dual d’un cone C de V est
C={reV*|A() =0, vxe C}.

C est un cone convexe polyédral de V'*, rationnel pour le réseau dual M* de
M. De plus, la codimension de C est la dimension de C N (- O), c’est-a-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est
saillant si et seulement si C est de dimension d.

Soit C un cdne de V, et (0;); < ; une subdivision de son c6ne dual c; alors
C = n C;ou C; est le cone dual de o;. Pour tout i € I, on se donne f; e M

iel

tel que f;| o, = f; quelle que soit la face c; de o; (on considére f; comme
fonction linéaire sur ;). Alors les f; se recollent en une fonction continue sur
o, linéaire par morceaux, a valeurs entiéres sur ¢ N M*. On dit que f est

convexesi f(a) + f(b) < f(a+ b) pour tous @, b dans o; cela signifie que pour
tout m € V, ’ensemble

A@m) ={x e o|mx) < f(x)}
est vide ou convexe.



	1.2. Fonctions caractéristiques de cônes et polyèdres

