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POLYÈDRES ET RÉSEAUX

par Michel Brion

0. Introduction

De nombreux problèmes de combinatoire se ramènent à énumérer les points

communs à un polytope convexe P, et à un réseau M qui contient tous les

sommets de P; il s'agit en particulier d'étudier l'application iP(n) qui à tout
entier n ^ 1, associe le nombre de points communs à M et au multiple nP de

P. Un résultat remarquable dû à E. Ehrhart, affirme que iP se prolonge en

une fonction polynomiale, dont la valeur en tout entier négatif - n est (au

signe près) le nombre de points communs à M et à nP, où P est l'intérieur
de P (voir [E], §§5 et 6). Ce théorème a été généralisé par I. Macdonald et

d'autres, au cas où chaque point m de M n (nP) est compté avec un certain

coefficient, par exemple l'angle solide sous lequel on peut voir nP depuis m

(voir [M], [MM]).
Plus récemment, sous l'impulsion de R. Stanley, ces résultats ont été

redémontrés, et d'autres propriétés de la fonction iP ont été établies, par des

méthodes d'algèbre commutative. Renvoyons à [S], [H] pour plus de

précisions, et aussi pour des applications intéressantes à des questions combi-
natoires. Dans [B], l'auteur a introduit une autre approche, qui repose sur une
notion de fonction caractéristique d'un polyèdre convexe, et sur des identités
entre ces fonctions. Voici de quoi il s'agit: à tout point m du réseau M, on
associe un «monôme de Laurent» xm; si M est identifié à Zd, et m à

md), c'est le monôme x1 • • • x%d. La fonction caractéristique (p(P)
d'un polyèdre convexe entier P est la somme des xm pour m e P n M; c'est
une série formelle de Laurent. On montre que (p(P) est le développement en
série d'une fraction rationnelle <!>(P), ayant pour dénominateur un produit de

termes de la forme 1 - xm, m e M\{0}. De plus, 0(P) est la somme des

fractions rationnelles attachées aux «cônes tangents» aux sommets de P, où
le cône tangent en un sommet s de P est le plus petit cône convexe de sommet
5, qui contient P. Le même résultat vaut en remplaçant P et ses cônes tangents
par leurs intérieurs. Lorsqu'on multiplie P par un entier, ces relations se trans-
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forment de façon très simple, ce qui permet de retrouver le résultat d'Ehrhart
(si P est un polytope) par un passage à la limite eni 1. On peut même donner

une formule explicite, mais horrible, pour la fonction iP (voir [B],
Théorème 3.1).

Dans [B], les identités précédentes entre fonctions caractéristiques ont été

établies grâce au dictionnaire entre polyèdres convexes entiers, et variétés

toriques munies d'un fibré en droites ample (voir [O], Chapter II). Ensuite,
M. Ishida a donné une démonstration élémentaire de résultats un peu plus
généraux (voir [I]). Le but de ce travail est d'exposer les propriétés des

fonctions caractéristiques des polyèdres convexes entiers, en suivant les idées

d'Ishida, et d'en déduire des généralisations du théorème d'Ehrhart (théorèmes
3.1 et 3.2 ci-dessous). Les preuves reposent sur des variantes de la relation
d'Euler entre les nombres de faces d'un polytope (lemme 2.1

ci-dessous).
Un problème intéressant mais complètement ouvert, est d'interpréter, en

fonction de la géométrie du polytope convexe entier P, les coefficients de

l'application polynomiale iP(n) a0 + axn + ••• + adnd. On sait depuis

Ehrhart que a0 1; de plus, d est la dimension de P; ad est la mesure de P,
et 2ad- i est la mesure du bord de P (voir 3.2 ci-dessous). Mais la signification
de au ...,ad-2 est inconnue.

1. Fonctions caractéristiques

1.1. Polynômes et séries de Laurent

Les notations de cette section seront utilisées dans toute la suite. Soient M
un réseau dans un espace vectoriel réel V, de dimension finie d. On note Z [M]
l'algèbre du groupe M sur Z, et (.xm)m e M sa base canonique: la multiplication
dans Z[M] est définie par xm • xm' xm + m'. Le choix d'une base

(ml9..., md) de M induit un isomorphisme de Z [M] avec l'anneau des

polynômes de Laurent, à coefficients entiers, en les indéterminées ...,xmd.
On note Z [[M]] le groupe abélien formé des séries formelles Xi am*m à

m e M

coefficients entiers. On définit sur Z [[M]] une structure de module sur Z [M],
par

Xp ' Xi dm^m ~ Xi Q,m-pXm
m g M m e M

(mais en général, on ne peut définir le produit de deux séries formelles). On

peut voir Z[[M]\ comme l'ensemble des séries de Laurent formelles, en d

indéterminées.
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