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POLYEDRES ET RESEAUX

par Michel BRION

0. INTRODUCTION

De nombreux problémes de combinatoire se ramenent a énumérer les points
communs 4 un polytope convexe P, et a un réseau M qui contient tous les
sommets de P; il s’agit en particulier d’étudier ’application ip(n) qui a tout
entier n > 1, associe le nombre de points communs a M et au multiple nP de
P. Un résultat remarquable dii & E. Ehrhart, affirme que i» se prolonge en
une fonction polynomiale, dont la valeur en tout entler negatlf —n est (au
signe preés) le nombre de points communs a M et a nP ou P est ’intérieur
de P (voir [E], §§5 et 6). Ce théoréme a été généralisé par I. Macdonald et
d’autres, au cas ou chaque point m de M n (nP) est compté avec un certain
coefficient, par exemple I’angle solide sous lequel on peut voir nP depuis m
(voir [M], [IMM)).

Plus récemment, sous l'impulsion de R. Stanley, ces résultats ont été
redémontrés, et d’autres propriétés de la fonction ip ont été établies, par des
méthodes d’algébre commutative. Renvoyons a [S], [H] pour plus de
précisions, et aussi pour des applications intéressantes a des questions combi-
natoires. Dans [B], I’auteur a introduit une autre approche, qui repose sur une
notion de fonction caractéristique d’un polyédre convexe, et sur des identités
entre ces fonctions. Voici de quoi il s’agit: a tout point m du réseau M, on
associe un «mondme de Laurent» x™; si M est identifié a Z4, et m a
(my, ..., my), c’est le mondme x7"' --- x7¢. La fonction caractéristique ¢ (P)
d’un polyedre convexe entier P est la somme des x™ pour m € P N M; c’est
une série formelle de Laurent. On montre que @(P) est le développement en
série d’une fraction rationnelle ®(P), ayant pour dénominateur un produit de
termes de la forme 1 — x”, m € M\{0}. De plus, ®(P) est la somme des
fractions rationnelles attachées aux «cones tangents» aux sommets de P, ou
le cOne tangent en un sommet s de P est le plus petit cOne convexe de sommet
S, qui contient P. Le méme résultat vaut en remplagant P et ses cdnes tangents
par leurs intérieurs. Lorsqu’on multiplie P par un entier, ces relations se trans-
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forment de fagon trés simple, ce qui permet de retrouver le résultat d’Ehrhart
(si Pest un polytope) par un passage a la limite en x = 1. On peut méme donner
une formule explicite, mais horrible, pour la fonction ip (voir [B],
Théoreme 3.1).

Dans [B], les identités précédentes entre fonctions caractéristiques ont été
¢tablies grace au dictionnaire entre polyédres convexes entiers, et variétés
toriques munies d’un fibré en droites ample (voir [O], Chapter II). Ensuite,
M. Ishida a donné une démonstration élémentaire de résultats un peu plus
généraux (voir [I]). Le but de ce travail est d’exposer les propriétés des
fonctions caractéristiques des polyédres convexes entiers, en suivant les idées
d’Ishida, et d’en déduire des généralisations du théoréme d’Ehrhart (théorémes
3.1 et 3.2 ci-dessous). Les preuves reposent sur des variantes de la relation
d’Euler entre les nombres de faces d’un polytope (lemme 2.1
ci-dessous).

Un probléme intéressant mais complétement ouvert, est d’interpréter, en
fonction de la géométrie du polytope convexe entier P, les coefficients de
I’application polynomiale ip(n) = ay + ayn + -+ + azn?. On sait depuis
Ehrhart que ay = 1; de plus, d est la dimension de P; a, est la mesure de P,
et 2a,_, est la mesure du bord de P (voir 3.2 ci-dessous). Mais la signification
de a;, ..., a;_, est inconnue.

1. FONCTIONS CARACTERISTIQUES

1.1. POLYNOMES ET SERIES DE LAURENT

Les notations de cette section seront utilisées dans toute la suite. Soient M
un réseau dans un espace vectoriel réel V, de dimension finie d. On note Z[M]
’algébre du groupe M sur Z, et (x™),, < »r 52 base canonique: la multiplication
dans Z[M] est définie par x™-x™ = xm+m’_ Le choix d’une base
(m,, ..., mz) de M induit un isomorphisme de Z[M] avec I’anneau des poly-
nomes de Laurent, & coefficients entiers, en les indéterminées x™1, ..., x™d.

On note Z[[M]] le groupe abélien formé des séries formelles Y an.xma
meM

coefficients entiers. On définit sur Z[[M]] une structure de module sur Z[M],
par

XP o Y @px™ =Y, @n_p,X"
meM meM

(mais en général, on ne peut définir le produit de deux séries formelles). On
peut voir Z[[M]] comme I’ensemble des séries de Laurent formelles, en d
indéterminées.
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Soit S le sous-ensemble de Z[M] formé des produits finis d’éléments de la
forme 1 — x™, m € M\{0}. On note S~'Z[M] le sous-anneau du corps des
fractions de Z[M], formé des s~'u ou u € Z[M] et 5 € S. Enfin, on note
(M) ’ensemble des u € Z[[M]] tels que S - u rencontre Z[M]; c’est un sous-
Z[M]-module de Z[[M]].

Pour tout entier p > 0, on note S, le sous-ensemble de S formé des
produits d’au plus p éléments de la forme 1 — x™,m e M \{0}. On définit de
facon évidente S, 'Z[M] et Z,(M).

PROPOSITION. I/ existe un unique Z[M]-morphisme
& LM) —~ S VL[M]

tel que F(u) = u pour tout u € Z[M]. De plus, S (Z,(M)) C S, ' Z[M]
pour tout entier p = 0.

Démonstration. Soit u e Z,(M). Choisissons se€S§, tel que
v=s-uecZ[M], et posons F(u) =s e S~ 'Z[M]. On vérifie immédia-
tement que & (u) ne dépend pas du choix de s, et que & convient. [

On appelle &(u) la somme de la série formelle u € & (M). Par exemple,
pour tout m € M\{0}, on a:

n=20

= — ®

S/(f’,x’””)=(1—x’”)‘1 et Sﬂ( i x"’”)zo.

1.2. FONCTIONS CARACTERISTIQUES DE CONES ET POLYEDRES

Définitions. Une demi-droite § de V est entiére si son origine m est un
point de M, et si 6 \{m} rencontre M. Un cdne (convexe, rationnel, polyédral)
est ’enveloppe convexe d’un nombre fini de demi-droites entiéres, de méme
origine O. Le cOne C est saillant s’il ne contient aucune droite, et simplicial
s’il est enveloppe convexe de demi-droites dont les directions sont linéairement
indépendantes.

Une subdivision du cone C est une famille (C;); .; de cOnes saillants telle
que:

C= v C;

el
si F est une face de C;, alors F = C; pour un j € [;

Pintersection C; n C; est une face de C; et de C;.
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La fonction caractéristique d’un co6ne C est I’élément

e(C)= Y x~m
meCnM
de Z[[M]]. Remarquons que C est uniquement déterminé par ¢(C); en effet,
C est I’enveloppe convexe du support de ¢(C).

PROPOSITION. Pour tout cone C, ona: ¢o(C)e Zy(M). De plus, C
est saillant si et seulement si @(C) # 0.

Démonstration. Traitons d’abord le cas ou C est simplicial. Soient
Oy, ..., 0, ses arétes. Pour 1 < i < n, le monoide §; N M a un unique géné-

n

rateur m;. Tout élément de C s’écrit de facon unique Y, (x;+y)m; ou

i=1

n
xeN, 0y <1 et Z y;m; € C. Par suite, si Pc désigne ’ensemble des
Jj=1

n
Y, yym; avec 0 < y; < 1 pour 1 <j < n, alors
=1

o) [[A—xm)= ¥ xm
i=1 mePcn M
et de plus Pc n M est fini, donc C € Z,(M) C Z,(M).
Dans le cas général, on choisit une subdivision (C;);; de C en cOnes
simpliciaux. Alors
PC) = L oC)— L olCnCh+ Y o(C:inCinCy) — -+
i i,J i,j, k
est une somme alternée de fonctions caractéristiques de coOnes simpliciaux,
donc @ (C) € Z;(M).

Pour la seconde assertion, supposons d’abord que C n’est pas saillant. Il
existe alors m € M\{0} tel que Rm C C. Par suite, C=m + C d’ou
(1 —xm)e(C) =0, et H(o(C)) = 0.

Réciproquement, supposons C saillant, et montrons que “(@(C)) # 0.
Sinon, soient my, ..., m, dans M\ {0} tels que

(1) o) [ @ ~xm)=0.

i=1
D’aprés le théoréme de Hahn-Banach, ’ensemble des formes linéaires A sur
V, telles que A(p) > 0 pour tout p € C\{0}, est un ouvert non vide du dual
V* de V. Par suite, on peut trouver un tel A avec A(m;) # 0 pour 1 < i < n.
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Puisque
1 — xmi= —xmi(l—x""),

on peut au besoin changer m; en —m;, et supposer que A(m;) > 0 pour
1 <i<n. Alors, si Z[[M]], désigne le sous-groupe de Z[[M]] formé des séries
a support dans le demi-espace ouvert (A>0), on a: p(C) el + Z[[M]]+,
donc

o(C) - [T A ~xm) el + Z[[M]].

i=1
ce qui contredit (1). [

Pour tout cébne C, on pose ®(C) = F(¢(C)); c’est un ¢élément de
S, 'Z[M].

Définissons un polyédre convexe entier P comme ’enveloppe convexe d’un
nombre fini de demi-droites entiéres, et de points de M; la fonction caracté-

ristique de P est ¢(P)= Y. x™. Nous verrons en 2.2 que ¢(P)
mePnM

e Z;(M), et que sa somme F(@(P)) = ©(P) s’exprime a ’aide des fonctions
caractéristiques des cOnes tangents aux sommets de P.

2. IDENTITES ENTRE FONCTIONS CARACTERISTIQUES

2.1 UN PROPRIETE D’ADDITIVITE
Définitions. Le cone dual d’un cone C de V est
C={reV*|A() =0, vxe C}.

C est un cone convexe polyédral de V'*, rationnel pour le réseau dual M* de
M. De plus, la codimension de C est la dimension de C N (- O), c’est-a-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est
saillant si et seulement si C est de dimension d.

Soit C un cdne de V, et (0;); < ; une subdivision de son c6ne dual c; alors
C = n C;ou C; est le cone dual de o;. Pour tout i € I, on se donne f; e M

iel

tel que f;| o, = f; quelle que soit la face c; de o; (on considére f; comme
fonction linéaire sur ;). Alors les f; se recollent en une fonction continue sur
o, linéaire par morceaux, a valeurs entiéres sur ¢ N M*. On dit que f est

convexesi f(a) + f(b) < f(a+ b) pour tous @, b dans o; cela signifie que pour
tout m € V, ’ensemble

A@m) ={x e o|mx) < f(x)}
est vide ou convexe.
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LEMME. Soient C et f comme précédemment. Si f est convexe,
alors pour tout me V:
y (= 1)codimio — 1 si m eir;(fi+ C)
iel,me fi+ C; 0 sinon .
Démonstration (voisine de [D], p. 564]. On considére les groupes de
cohomologie relative H”(c, A(m)) a coefficients rationnels. De la suite exacte
longue

- = H =1 (A(m)) = H(0, A(m)) > H"(0) = H"(A(m)) — -+

et de la convexité de o et de A(m), il résulte que H"(c, A(m)) = 0 pour tout
n > 2. De plus

0~ H(s, A(m)) ~ H(c) = H(A(m)) ~ H' (o, A(m)) > 0
et i est surjective, donc H'(c, A(m)) = 0. Enfin

H(c,Am) # 0 Am)=g em>=2fsuroeme f+C
et

H'(c, A(m)) = Q

dans ce cas. De méme, H"(o;, A(m) N ;) = 0 pour tout n > 1, et tout i € I.
Par suite, d’apres le théoréme de Leray (voir [G], corollaire au théoréme 5.2.4)
appliqué au recouvrement fermé ¢ = U o;, le groupe H"(c, A(m)) est le

iel
n-ieme groupe d’homologie du complexe
(2) o> @ H%,Am)no)— -

dim(c) = n

Puisque H%(o;, A(m) N o;) est égal & Q si me f; + C;, et & 0 sinon,
I’identité cherchée s’obtient en calculant la caractéristique d’Euler du
complexe (2). [

THEOREME (Ishida). Soient f et C comme précédemment. Si f
est convexe, alors o(n (fi + C)) € ZLy(M), et

iel

(N (fi+C)= Y Ofi+C).

iel ie€l,C;saillant

Démonstration. Montrons que

- (3) L (= DeimClg(fi+ C) = o(N (fi+ C)) .

iel iel
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En effet, pour tout m € M, les coefficients de x™ dans les deux membres de
(3) sont égaux d’apres le lemme. Pour conclure, on remarque que ¢ (f; + G;)
— x/ip(C)), et que F(@(C)) =0 si C; n’est pas saillant, ¢ ‘est-a-dire si

dim(c;)) <d. U
En prenant f = 0, on obtient le

COROLLAIRE. Pour tout cone C, et toute subdivision (c))ie; de son
cone dual, on a

®C)= L @)

i €I, C;saillant

ou C; estle cone dual de o;.

o
a1 2

03

FiGURE 1

Une subdivision du c6ne dual
2.2. POLYEDRES ET FONCTIONS D’APPUI

Afin de pouvoir appliquer le résultat qui précede aux fonctions caracté-
ristiques des polyeédres, nous allons rappeler brievement les liens entre les
polyeédres convexes et leur fonction d’appui; pour plus de détails, voir [O],
Appendix et [R], §§13 et 19.

Soit P un polyédre convexe entier dans V; nous allons lui associer une sub-
division d’un cOne de V*, et une fonction convexe en 2.1. Définissons la
fonction d’appui de P par

f:V¥*>{-o}UR

x— inf,cp x(p).
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Soit ¢ I’ensemble des x € V* tels que f(x) # — . C’est un cOne, et
JS(xX) = min, . ¢ x(s) pour tout x € ¢, ou ¥ est I’ensemble des sommets de P.
Pour toute face F de P, on note P ’ensemble des ¢(—f+p) ou f € F,
t e R, et p e P; C’est un cdne, dont on note 6y le cone dual. Remarquons
que Pr N (— Pr) est la direction du sous-espace affine engendré par F; en
particulier, Pr est saillant si et seulement si F se réduit & un sommet. On
vérifie sans peine que la famille des o, F face de P, est une subdivision de
c, avec les o,,5 € 4, comme cbnes de dimension maximale. De plus,
flos=s pour tout se %, et P= n (s + Py) si P ne contient aucune

se %

droite.

Réciproquement, soit (6;);; une subdivision d’un coéne ¢ de V*. Pour
tout i € I, soit f; € M, tel que f; | 6, = f; si o; est une face de o;. On suppose
que la fonction f, obtenue par recollement des f;, est strictement convexe,
c’est-a-dire que f(a) + f(b) < f(a + b) chaque fois que a, b appartiennent a
des cones distincts de la subdivision. Alors P = n (fi+ 6;) est un polyédre

iel
convexe entier, ayant pour sommets les f; tels que la dimension de o; soit
maximale, et pour fonction d’appui f. De 2.1 suit donc le

THEOREME. Soient P un polyédre convexe entier, et % [’ensemble de
ses sommets. Alors

O(P) = ), X ()

se €

ou P, est le cone engendré par — s + P.

2.3. FONCTIONS CARACTERISTIQUES DE POLYEDRES OUVERTS

O
Pour tout convexe C de V, on note C son intérieur relatif, c’est-a-dire

I’intérieur de C dans ’espace affine qu’il engendre.

THEOREME. (i) Pour tout polyédre convexe entier P, on a:
O
O(P) € Zy(M), et

o) = ¥ x0(P,)

se

avec les notations ci-dessus.
O
(ii) Pour tout céne saillant C, on a: ¢(C) € ZLy(M), et

®(C) = (— 1)4m OB (- C)

- ou — C estle cone opposé a C.
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Démonstration. On peut supposer que P engendre V. On associe a P sa
fonction d’appui f, et une subdivision (6;);  ; de 6 comme €n 2.2. Supposons
d’abord que P est borné; alors ¢ = V*. Montrons que

. O
(4) Y, (= hedm@do(f; — C) = (= D9 (P) ,

iel
ou on pose C; = 6;. Comme en 2.1, il suffit de montrer que

(= D? si me P

0 sinon .

(5) Z (— 1)codim(o,-) — {
iel,me fi— Cj
On pose B(m) = {x e V*|m(x) > f(x)} et on considére les groupes de
cohomologie H"(V*, B(m)). Puisque f est linéaire sur chaque o;, I’ensemble
6, N B(m) est vide ou convexe, d’ott comme en 2.1: H"(c;, B(m) N 6;) =0
pour tout n > 1. Par suite, H"(V*, B(m)) est le n-iéme groupe de coho-
mologie du complexe

(6) o> @ Hoi,,B(m)no)—

dim(c;) = n
De plus, H°(c;, B(m) N o;) est égal & Q si m < f sur o;, C’est-a-dire si
m € f; — C;; et a 0 sinon. D’autre part, on a:

H~(V*, B(m)) = H'™"(V*\B(m))

par dualité d’Alexander. De plus, puisque V*\B(m) = {xe V* | m(x)
< f(x)} est un cone convexe fermé de V*, on a: Hﬁ,(V*\B(m)) = 0 pour
tout i > 0, sauf si V¥\B(m) = {0} eti = 0. D’ou H"(V*, B(m)) = 0 sauf si
n=d et m()> f(x) pour tout x # 0, c’est-a-dire si m € P Finalement, la
caractéristique d’Euler du complexe (6) est (— 1)4 si m € 18, et 0 sinon,
d’ou (5).

Lorsque P n’est plus supposé borné, mais ne contient aucune droite, on
peut trouver x € V* tel que le polyédre convexe P, = {p € P|x(p) < ¢t} soit
borné, et d’intérieur non vide, pour tout ¢ assez grand. De plus, P, est entier
pour une infinité de valeurs positives de #. En écrivant I’identité (4) pour P,
et en faisant tendre 7 vers + oo, on obtient (4) pour P. En sommant les séries,
on en déduit que

(-Die@) = ¥ o(fi-C)= ¥ x®(—P).

i el, Cjsaillant se®

En particulier, si P = C est un cbne saillant, alors € = {0} et (— l)d(I)(CQ)
= ®(— C) d’ou (ii). L’assertion (i) s’en déduit aussitdt, si P ne contient aucune
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. . . . . O
droite. l\élals si P contient une droite, alors P = m + }% pour un m € M,
d’ou ®(P) = 0. D’autre part, P n’a pas de sommet, donc (i) est triviale dans
ce cas. [J

FIGURE 2

De I’identité (ii) et du corollaire 2.1, suit aussitot le

COROLLAIRE. Pour tout céne C, et toute subdivision (0;);c; de son
cone dual, on a

o )= ¥ oCy,

i €l, C;saillant

ou C; estle cone dual de o;.

2.4. FONCTIONS CARACTERISTIQUES PONDEREES

Définition. Un poids o est la donnée, pour tout m € V et tout cone C,
d’un nombre réel w(m, C), tel que

w(m,C) =0 si x¢ C; r

w(m, C) ne dépend que de la face de m dans C;
w(—m, —C) = o@m, C).
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Si F est une face de C, on pose o(F, C) = o(m, C) ou m est un point
O
quelconque de F.
Pour tout poids ®, on définit son poids dual w* par

o*(m,C) = ) (- H*Oa(F, C)

mekF

(somme sur toutes les faces de C qui contiennent m).

PROPOSITION. Pour tout poids ®, on a: o** = o.

Démonstration. Soit m € C; alors

w**(m, C) = Z [ l)codim(mw*(F’ 0)

mekF

— E (_ 1)codim(F)+codim(F’)w(Fl’ C) )

meFCF’

Mais pour toute face F’ de C, on a

(— 1)codimF) si  F’ est la face de m

™ Y (=i = {

meFCF' 0 sinon ;

en effet, grace au théoréme 2.3 (ii):

Y (- )=mOQF) = (D! L O(~F) = (- DD(~F)

FCF’ FCF'
— (_ l)codim(F’)q)(]g") ,
d’ou (7) . Par suite, on a o**(m, C) = o(F’, C) ou F’ est la face de m.

Exemples.

1 si C
() Soit x le poids défini par x(m, C) = { sim e
0 sinon .

Alors

1 sime 5
x*(m, C) = .
0 sinon .

(ii) On suppose V euclidien. Notons S(m, €) la spheére de centre m, de
rayon € > 0. Pour ¢ assez petit, le rapport w(S(@m, €) N C)/u(S(m, €)) (ou p
est la mesure de Lebesgue sur S(m, €)) ne dépend pas de €; notons-le a(m, C).
Ce nombre mesure I’angle sous lequel on voit C depuis la face de m. D’aprés
un résultat de Brianchon et Gram (voir [PS]) on a

o* = a .
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Soit @ un poids. Pour tout polyédre convexe P, et tout m € V, on pose
o(m, P) = (0, Pr) ou F est la face de m dans P, et Py est le cOne formé des
I(=f+p),feF,teR,,peP (voir 2.2). On définit

0(P)= Y o, P)x"eR[M]] .

mePnNnM

Alors @, = @ ou y est comme dans ’exemple (i). De plus, pour tout poids ®,
on a

0o(P) = ¥ o(F, P)o(F)

F

(somme sur toutes les faces F' de P). Donc ¢,(P) € Z,(M) d’apres 2.3. On
pose @,(P) = F(9,(P)).

THEOREME. (1) Pour tout polyedre convexe entier P, on a

q)(o(P) = E??(Dw(Ps) >

ou % est I’ensemble de sommets de P, et P, estle cOne engendré par
-5+ P.

(i) Pour tout come C, on a
D, (C) = (= DO, (- C) .
Démonstration. (i) On a, d’apres le théoréme 2.3,

0,(P) = ¥ o(F,P)O(F) = ¥ o(F,P) ¥ ®F,),

F F se %p
ou &r est ’ensemble des sommets de la face F. D’ou

o,P)= L (L oF,P)BEF,)) = ¥ ®,(P,) .

se€ Fos se %
(i1)) On a de méme

0,(C) = ¥ o(F, O)OF) = ¥ (- DInPo(F, C) (- F)
F

F

= T (- IO F, O)0(~ F)

F'CF

= (— l)dim(C) E ( Z (_ l)COdim(F)Q)(F, C))(I)(_Igz)

F' FDOF'

= (= 1)dim(©) Z o*(F’, C)(D(—ﬁ’)
&=

= (- 1)ImOP (-C). [
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3. PROPRIETES ENUMERATIVES DES POLYTOPES CONVEXES ENTIERS

3.1. COMPORTEMENT POLYNOMIAL DE FONCTIONS DE COMPTAGE

Soient P un polytope convexe entier, c’est-a-dire I’enveloppe convexe d’un
nombre fini de points de M, et @ un poids (voir 2.4). Pour tout entier n > 1,
on pose

lo,p(n) = ) w(m, nP) ,

menP)nM

ou nP = {np|p € P}.

THEOREME. La fonction i, p se prolonge en une fonction polynomiale
sur R, de degré au plus d.

Démonstration. Soit € ’ensemble des sommets de P. Pour tout s € &,
soit P, le cdne engendré par — s + P. Alors I’ensemble des sommets de nP
est n%, et on a: (nP),, = Ps pour tout s € 4. D’apres le théoreme 2.4, on a:

Y o@m,nP)xm = ®,(nP) = ), x=®,(P;) .
menP)n M se

De plus, chaque ®,(P;) est combinaison linéaire a coefficients entiers de

n
termes de la forme x? [[ (1 —xm)~-! ou n < d. Choisissons une forme
i=1

linéaire A sur V, telle que A(m;) # 0 chaque fois que 1 — x™ figure au
dénominateur d’un des ®,(P;). Soit fe€ R\{0}. Il existe un unique
morphisme d’algébres €: Z[M] — R tel que £(x™) = exp (tA(m)), ou exp est la
fonction exponentielle. Par hypothése, € s’étend a 1’algebre engendrée par
Z.[M] et les ®,(Ps). D’ou la relation

(8) Y. o(m,nP)exp(th(m)) = Y, exp(tni(s)) - &(®y(P,)) .

me(nPynM se ¥

De plus, €(®,(P;,)) est une combinaison linéaire de termes

exp(tA (@) - J[ (1 —exp(tA(m)) -1,

=1
donc son développement en série de Laurent en ¢, est de la forme

+ oo

E(q)m(Ps)) = Z aq(S)tq )

qg=—rg
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avec r; < d. En comparant les termes constants dans les développements des
deux membres de (8) en série de Laurent en ¢, on trouve

Y w(m, nP) = Y Z a_p(S) ()

me(nP)nM se%p=0

d’ou le résultat. [

On note encore i, p la fonction polynomiale ainsi définie. En général,
iy, p(0) n’est pas égale a 1; sa valeur correcte sera calculée dans le corollaire 3
ci-apres.

3.2. LOI DE RECIPROCITE

On conserve les notations de 3.1. Soit ®* le poids dual de w (voir 2.4).

THEOREME. On a [l’identité suivante entre fonctions polynomiales:

lo,p(— 1) = (= D%iex,p() .

Démonstration. On reprend les notations de la preuve du théoréme 3.1.
On a

q)m(np) = Z xnsq)u)(Ps)
se &
= (— l)d Z xnsq)m*(_Ps)

se %

d’aprés le théoréme 2.4. Par suite, on a

©) Y o(m nP)exp(th(m)) = (- 1)¢ ) exp (tnh(s)) e(Pps(— Py)) .
memP)Nn M se?®
+ oo
Soit £(@y«(Ps)) = ), aX(s)t? son développement en série de Laurent.
q=—1Ts

En remplacant ¢ par — ¢ dans (9), on obtient:

Y wo(m, nP)exp(— A(m)) = (— 1)? Y, exp(— tni(s)) +Z°° ai(s)te .

menP)ynM se® q= ~rg

D’ou, en prenant le terme constant,

o) = (-7 Y Y a* 0 () (—n)? = (= D)igu.p (— 1)
s e ? 0

Z p=

d’aprés la fin de la preuve du théoréme 3.1. [




POLYEDRES ET RESEAUX 85

En prenant pour poids la fonction y définie dans ’exemple 2.4.(i), on
retrouve le résultat suivant (voir [E], §6):

COROLLAIRE 1. Soient ip(n) = card (nP) n M)) et ip(n) = card((nP) n M).
Alors les fonctions ip et i sont polynomiales, et on a ip(—1)
= (= D%ip ().

Lorsqu’on prend pour poids la fonction a définie dans ’exemple 2.4 (ii),
on a a = o*, dou le

COROLLAIRE 2 (voir [M], Theorem 4.8). La fonction

o p(M)= Y a(m nP)

menP)nM

est polynomiale, et i, p(—1t) = (— 1), p(?).

Les fonctions i, p ont été introduites par H. Hadwiger pour caractériser
I’équivalence de deux polytopes par décompositions et translations entieres
(voir [H], 2.2.9).

Revenons au cas général. Pour toute face F de P, ’espace affine ( F')
qu’elle engendre, est muni d’une mesure canonique p: la mesure de Lebesgue
normalisée de facon que la maille unité du réseau M N { F') soit de mesure 1.

COROLLAIRE 3. Pour tout poids ®, le coefficient de t¢ dans i, p(t)
O
est Ou(P), ot ®= w(x, P) pour tout x € P. Le coefficient de t9-!
dans i, p(f) est

Y (o@F P)-o/2)u@).

codim(F) =1
Enfin, le terme constant de i, p(t) est Y, (—1)dm®P) p(F, P).
F

Démonstration. On a

ico,P(n) = E (D(F’ P)iFO(n) .

F
De plus, puisque

l'po(n) - p - dim(F) = p —dim(F) E 1
meFOn(l/n)M

est une somme de Riemann pour l’intégrale Squ, on a

iP(n) ~ nim®yF),

n — oo

d’ou la premiere assertion. Montrons d’abord la deuxiéme assertion lorsque
o = %. Alors
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ip(n) — card((ndP) N M) = card ((nP) n M) — card ((ndP) n M)
= ip(n) = (- )?%ip(—n),
ou OP désigne le bord de P. Donc, si a est le coefficient de n?-! dans ip(n),

a- ¥ uE)=(-Di-1ia,

codim(F) = 1
dota= )  wn(@)/2. Dans le cas général, puisque
codim (F) = 1
io,p(N) = Y, @(F, P)if(n) = (- 1)¢@ip(— n)
F

+ X (= D)ImBo(F, P)ip(—n),
F#P
le coefficient de n?~! dans i, p(n) est
Oa—- Y oF P)uF).
codim (F) = 1
Le méme argument réduit la preuve de la derniére assertion au cas ou
‘@ = y; il faut montrer que ip(0) = Y, (— 1)4m® = 1. Mais cela résulte faci-
F

lement de la preuve du théoréme 3.1, et du fait que

Y &P, =1.

se ¥
En effet, les FV’S sont les cones de dimension maximale d’une subdivision de
V* (voir 2.2), et le corollaire 2.1 s’applique. [

3.3. LE CAS D’UN POLYTOPE RATIONNEL

Dans cette section, on considére un polytope convexe P dans V, rationnel
par rapport au réseau M: pour tout sommet s de P, il existe un entier n; > 0
tel que n, - s € M. On va étendre a cette situation les résultats de 3.1 et 3.2.

Soit ® un poids; posons i, p(n) = ) w(m, nP). Notons M le
menP)nM

réseau engendré par M et les sommets de P. Soit y le plus petit entier positif
tel que v - s € M pour tout sommet s de P (c’est I’exposant du groupe abélien
fini M/M).

| THEOREME. I/ existe des fonctions polynomiales 18) A ig,) p sur R,

telles que iy, p(n) = i’ p(n) si n=r(mody). De plus, on a

i p(= 1) = (= DY p(=1)

pour tout t e R.
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Démonstration. Soit 7. Z[[M]] — Z[[M]] ’application définie par
(Y axr) = ), apxf.

peEM peEM
C’est un morphisme de Z[M]-modules. Soit S le sous-ensemble de Z[M]
forme des produits finis d’éléments de la forme 1 — x”,p € M \{0}; et so1t

“‘Z[M] le sous-anneau du corps des fractions de Z[M] engendré par S-
et Z[M]. De l’identité

n=20

y—1
(1-xP)~'=0~-x")"! ( Y x”P) ,

résulte que S—IZ[M] = X ‘IZ[M] Par suite, m s’étend en un unique

morphisme de Z[M]-modules, noté encore T: S *1Z[M] - S-1Z[M]. On a
donc, en posant

o,P) = Y o@mPxm e ®P)= Y olmP)x":

mePnM mePnM

D,(P) = ¥ n(x ®u(P)) .

se &

De plus, puisque chaque P, est rationnel pour le réseau M, on a: ®(P;)
€ S;ll[m. Soit # > 0 un entier; écrivons n = gy + r ou g est entier, et ou
1 <r<y. Alors

O, (nP) = ¥ n(xm@(Py) = ¥ x7m(x Dy (Py)) -
se ¥ se &

Le résultat s’en déduit comme dans les preuves des théoremes 3.1 et 3.2. ]
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