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L'Enseignement Mathématique, t. 38 (1992), p. 71-88

POLYÈDRES ET RÉSEAUX

par Michel Brion

0. Introduction

De nombreux problèmes de combinatoire se ramènent à énumérer les points

communs à un polytope convexe P, et à un réseau M qui contient tous les

sommets de P; il s'agit en particulier d'étudier l'application iP(n) qui à tout
entier n ^ 1, associe le nombre de points communs à M et au multiple nP de

P. Un résultat remarquable dû à E. Ehrhart, affirme que iP se prolonge en

une fonction polynomiale, dont la valeur en tout entier négatif - n est (au

signe près) le nombre de points communs à M et à nP, où P est l'intérieur
de P (voir [E], §§5 et 6). Ce théorème a été généralisé par I. Macdonald et

d'autres, au cas où chaque point m de M n (nP) est compté avec un certain

coefficient, par exemple l'angle solide sous lequel on peut voir nP depuis m

(voir [M], [MM]).
Plus récemment, sous l'impulsion de R. Stanley, ces résultats ont été

redémontrés, et d'autres propriétés de la fonction iP ont été établies, par des

méthodes d'algèbre commutative. Renvoyons à [S], [H] pour plus de

précisions, et aussi pour des applications intéressantes à des questions combi-
natoires. Dans [B], l'auteur a introduit une autre approche, qui repose sur une
notion de fonction caractéristique d'un polyèdre convexe, et sur des identités
entre ces fonctions. Voici de quoi il s'agit: à tout point m du réseau M, on
associe un «monôme de Laurent» xm; si M est identifié à Zd, et m à

md), c'est le monôme x1 • • • x%d. La fonction caractéristique (p(P)
d'un polyèdre convexe entier P est la somme des xm pour m e P n M; c'est
une série formelle de Laurent. On montre que (p(P) est le développement en
série d'une fraction rationnelle <!>(P), ayant pour dénominateur un produit de

termes de la forme 1 - xm, m e M\{0}. De plus, 0(P) est la somme des

fractions rationnelles attachées aux «cônes tangents» aux sommets de P, où
le cône tangent en un sommet s de P est le plus petit cône convexe de sommet
5, qui contient P. Le même résultat vaut en remplaçant P et ses cônes tangents
par leurs intérieurs. Lorsqu'on multiplie P par un entier, ces relations se trans-
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forment de façon très simple, ce qui permet de retrouver le résultat d'Ehrhart
(si P est un polytope) par un passage à la limite eni 1. On peut même donner

une formule explicite, mais horrible, pour la fonction iP (voir [B],
Théorème 3.1).

Dans [B], les identités précédentes entre fonctions caractéristiques ont été

établies grâce au dictionnaire entre polyèdres convexes entiers, et variétés

toriques munies d'un fibré en droites ample (voir [O], Chapter II). Ensuite,
M. Ishida a donné une démonstration élémentaire de résultats un peu plus
généraux (voir [I]). Le but de ce travail est d'exposer les propriétés des

fonctions caractéristiques des polyèdres convexes entiers, en suivant les idées

d'Ishida, et d'en déduire des généralisations du théorème d'Ehrhart (théorèmes
3.1 et 3.2 ci-dessous). Les preuves reposent sur des variantes de la relation
d'Euler entre les nombres de faces d'un polytope (lemme 2.1

ci-dessous).
Un problème intéressant mais complètement ouvert, est d'interpréter, en

fonction de la géométrie du polytope convexe entier P, les coefficients de

l'application polynomiale iP(n) a0 + axn + ••• + adnd. On sait depuis

Ehrhart que a0 1; de plus, d est la dimension de P; ad est la mesure de P,
et 2ad- i est la mesure du bord de P (voir 3.2 ci-dessous). Mais la signification
de au ...,ad-2 est inconnue.

1. Fonctions caractéristiques

1.1. Polynômes et séries de Laurent

Les notations de cette section seront utilisées dans toute la suite. Soient M
un réseau dans un espace vectoriel réel V, de dimension finie d. On note Z [M]
l'algèbre du groupe M sur Z, et (.xm)m e M sa base canonique: la multiplication
dans Z[M] est définie par xm • xm' xm + m'. Le choix d'une base

(ml9..., md) de M induit un isomorphisme de Z [M] avec l'anneau des

polynômes de Laurent, à coefficients entiers, en les indéterminées ...,xmd.
On note Z [[M]] le groupe abélien formé des séries formelles Xi am*m à

m e M

coefficients entiers. On définit sur Z [[M]] une structure de module sur Z [M],
par

Xp ' Xi dm^m ~ Xi Q,m-pXm
m g M m e M

(mais en général, on ne peut définir le produit de deux séries formelles). On

peut voir Z[[M]\ comme l'ensemble des séries de Laurent formelles, en d

indéterminées.
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Soit S le sous-ensemble de Z [M] formé des produits finis d'éléments de la

forme 1 - xm,m e M\{0}. On note S~lZ[M] le sous-anneau du corps des

fractions de Z [M], formé des s~lu où u e Z[M] et s e S. Enfin, on note

S?(M) l'ensemble des u e Z[[M]\ tels que S • u rencontre Z [M] ; c'est un sous-

Z [M]-module de Z [[M]].
Pour tout entier p ^ 0, on note le sous-ensemble de 5 formé des

produits d'au plus p éléments de la forme 1 - xm, m e M\{0}. On définit de

façon évidente S~XZ[M] et 2P(M).

Proposition. Il existe un unique Z[M]-morphisme

2: 2(M)~^ S~lZ\M]

tel que 2(u) u pour tout u e Z [M]. De plus, SF(2P(M)) C S~XZ[M]

pour tout entier p ^ 0.

Démonstration. Soit u e &P(M). Choisissons s e Sp tel que

v s - u e Z [M], et posons 9"(u) s~xv e S~lZ[M]. On vérifie immédiatement

que 9*(u) ne dépend pas du choix de et que 5^ convient.

On appelle 5^(tu) la somme de la série formelle u e 2?(M). Par exemple,

pour tout m e M\{0}, on a:

1.2. Fonctions caractéristiques de cônes et polyèdres

Définitions. Une demi-droite ô de V est entière si son origine m est un
point de M, et si ô \ {m} rencontre M. Un cône (convexe, rationnel, polyédral)
est l'enveloppe convexe d'un nombre fini de demi-droites entières, de même

origine O. Le cône C est saillant s'il ne contient aucune droite, et simplicial
s'il est enveloppe convexe de demi-droites dont les directions sont linéairement
indépendantes.

Une subdivision du cône C est une famille (C/)/e/ de cônes saillants telle

que:

C u Cil

2 (1 - xm) ~1 et

i e I

si F est une face de C/, alors F Q pour un j e /;
l'intersection Cz- n Cj est une face de Cz et de C7
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La fonction caractéristique d'un cône C est l'élément

(p(c) Y,
m e C n M

de Z[[M]]. Remarquons que C est uniquement déterminé par (p(C); en effet,
C est l'enveloppe convexe du support de (p(C).

Proposition. Pour tout cône C, on a: q>(C) e 5i(M). Déplus, C
est saillant si et seulement si (p(C) ^ 0.

Démonstration. Traitons d'abord le cas où C est simplicial. Soient

Ôi, ô„ ses arêtes. Pour 1 ^ < a, le monoïde 6/ n M a un unique géné-
n

rateur mt. Tout élément de C s'écrit de façon unique Y (xt + yi)mt où
i 1

n

Xt e N, 0 < yj < 1 et Y yjmj e C. Par suite, si Pc désigne l'ensemble des

j= i
n

Y yjfrij avec 0 < < 1 pour 1 ^j^n, alors
j i

n

(p(c)- n (i-*«o= i/ 1 me Pc ^ M

et de plus Pc n M est fini, donc C e 2n(M) C &d(M).
Dans le cas général, on choisit une subdivision (C/)/ e/ de C en cônes

simpliciaux. Alors

<P(C) E Cp(Ci) - £ (P(Ci n Cj) + Y, <P(C; n Cj n ~i i,j i,j, k

est une somme alternée de fonctions caractéristiques de cônes simpliciaux,
donc cp(C) e ^d{M).

Pour la seconde assertion, supposons d'abord que C n'est pas saillant. Il
existe alors m eM\{0} tel que Rm C C. Par suite, C m + C d'où
(1 -xm)y(C) 0, et S^((p(C)> 0.

Réciproquement, supposons C saillant, et montrons que .5^((p(C)) 0.

Sinon, soient mlf mn dans M\{0} tels que

n

(1) <P(CJ- n (l-xmO 0.
I 1

D'après le théorème de Hahn-Banach, l'ensemble des formes linéaires X sur

V, telles que X(p) > 0 pour tout p e C\{0}, est un ouvert non vide du dual

V* de V. Par suite, on peut trouver un tel X avec Xfjni) ^ 0 pour 1 ^ / < n.
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Puisque

1 _ Xmi ~ Xmi(\ -X~mi)

on peut au besoin changer m, en — et supposer que \(irii) > 0 pour
1 ^ i ^ n. Alors, si Z[[M]] + désigne le sous-groupe de Z[[M]] formé des séries

à support dans le demi-espace ouvert (X>0), on a: cp(C) e 1 + Z[[M]]+,
donc

<P(Q • Û (l-^)e 1 + Z[[M]] +
I 1

ce qui contredit (1).

Pour tout cône C,on pose ®(C) ^(<p(C)); c'est un élément de

VZ[M1.
Définissons un polyèdre convexe entier comme l'enveloppe convexe d'un

nombre fini de demi-droites entières, et de points de M; la fonction caractéristique

de P est (p (P)Y, x"' Nous verrons en 2.2 que <pfP)
m e P n M

e S'di.M), et que sa somme 9"(<${P))<&(P) s'exprime à l'aide des fonctions

caractéristiques des cônes tangents aux sommets de P.

2. Identités entre fonctions caractéristiques

2.1 Un propriété d'additivité

Définitions. Le cône dual d'un cône C de F est

C={Ie V*|L(x) >0, Vx e C}
v
C est un cône convexe polyédral de V*, rationnel pour le réseau dual M* de

V

M. De plus, la codimension de Cest la dimension de C n (- C), c'est-à-dire
du plus grand sous-espace vectoriel contenu dans C. En particulier, C est

V

saillant si et seulement si C est de dimension d.

Soit C un cône de F, et (oz)î e/ une subdivision de son cône dual o; alors
C n Ci où Ci est le cône dual de G/. Pour tout i e /, on se donne e M

i e I
tel que \ oy fj quelle que soit la face oy de o, (on considère ft comme
fonction linéaire sur a,-). Alors les fi se recollent en une fonction continue sur

o, linéaire par morceaux, à valeurs entières sur g n M*. On dit que / est

convexe si f (a) + /(b) < f(a + b) pour tous a, b dans o ; cela signifie que pour
tout m e V, l'ensemble

A (m) {x e g | m{x) < f{x)}
est vide ou convexe.
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Lemme. Soient C et f comme précédemment. Si f est convexe,
alors pour tout m e V:

^ f 1 si m e n (fi + Q)l l)codim(oJ) _ I

i e I, m e /,• + C, [ 0 6772072

Démonstration (voisine de [D], p. 564]. On considère les groupes de

cohomologie relative Hn(o, A(m)) à coefficients rationnels. De la suite exacte

longue

• • • -> Hn~l {A{m)) -> Hn(o,A(m)) -» Hn(o) i-> Hn{A{m)) -* • • •

et de la convexité de o et de A (m), il résulte que Hn(o, A (m)) 0 pour tout
n ^ 2. De plus

0 H°(a, A (m)) - H°(g) ^ H°(A (m)) -> H1(g, A (m)) -+ 0

et / est surjective, donc H1 (g, A (m)) 0. Enfin

H°(g, A(m)) A (m) 0^wi)/surö^wie/+C
et

H°(g, A (m)) Q

dans ce cas. De même, Hn(ci,A(m) n oz) 0 pour tout n ^ 1, et tout i e I.
Par suite, d'après le théorème de Leray (voir [G], corollaire au théorème 5.2.4)
appliqué au recouvrement fermé o u oz le groupe Hn(o, A(m)) est le

i e /
72-ième groupe d'homologie du complexe

(2) •••->© H°(qi9A(m) n g,-) - • • •

dim (a) - «

Puisque //°(o/, ^4(ra) n oz) est égal à Q si m e ft + C,, et à 0 sinon,
l'identité cherchée s'obtient en calculant la caractéristique d'Euler du

complexe (2).

Théorème (Ishida). Soient f et C comme précédemment. Si f
est convexe, alors cp( n (/• + C/)) e &d{M),

i e I

<D(n (/ + C,)) S ®<//+c,).
/il / e /, Cisaillant

Démonstration. Montrons que

(3) I (- + q>(n (/ + C,))
/e 7 f e /
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En effet, pour tout m e M, les coefficients de xm dans les deux membres de

(3) sont égaux d'après le lemme. Pour conclure, on remarque que cp (/• 4- C,)

jt-f'cp(Ci), et que 5^(cp(C/)) 0 si C, n'est pas saillant, c est-à-dire si

dim(o/) < d.

En prenant / 0, on obtient le

Corollaire. Pour tout cône C, et toute subdivision (of), e / de son

cône dual, on a

®cc) E o(c,)
/ e /, Cisaillant

2.2. Polyèdres et fonctions d'appui

Afin de pouvoir appliquer le résultat qui précède aux fonctions
caractéristiques des polyèdres, nous allons rappeler brièvement les liens entre les

polyèdres convexes et leur fonction d'appui; pour plus de détails, voir [O],
Appendix et [R], §§13 et 19.

Soit P un polyèdre convexe entier dans V; nous allons lui associer une
subdivision d'un cône de V*, et une fonction convexe en 2.1. Définissons la

fonction d'appui de P par

/: V* -+{- oo} u R

inf pePx(p)
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Soit g l'ensemble des x e V* tels que f{x)^ - oo. C'est un cône, et

/(x) min5 6 ^ x(s) pour tout x e o, où % est l'ensemble des sommets de P.
Pour toute face F de P, on note PF l'ensemble des t(-f + p) où f e F,
te R+ et p e P; c'est un cône, dont on note aF le cône dual. Remarquons
que PF n {- PF) est la direction du sous-espace affine engendré par F; en

particulier, PF est saillant si et seulement si F se réduit à un sommet. On
vérifie sans peine que la famille des cFi F face de P, est une subdivision de

o, avec les gs,se comme cônes de dimension maximale. De plus,

f \gs s pour tout 5 e f, et P n (s + Ps) si P ne contient aucune
Î6droite.

Réciproquement, soit (o/)/e/ une subdivision d'un cône o de V*. Pour
tout / e /, soit fi e M, tel que f \ Gj f si oy est une face de oz. On suppose

que la fonction /, obtenue par recollement des f, est strictement convexe,
c'est-à-dire que / (a) + fib) < f(a + b) chaque fois que a, b appartiennent à

des cônes distincts de la subdivision. Alors P n (/i+O/) est un polyèdre
i e /

convexe entier, ayant pour sommets les f tels que la dimension de oz soit

maximale, et pour fonction d'appui /. De 2.1 suit donc le

Théorème. Soient P un polyèdre convexe entier, et % l'ensemble de

ses sommets. Alors

<K(P) X x*<D(Ps)
sel

où Ps est le cône engendré par - s + P.

2.3. Fonctions caractéristiques de polyèdres ouverts
o

Pour tout convexe C de V, on note C son intérieur relatif, c'est-à-dire

l'intérieur de C dans l'espace affine qu'il engendre.

Théorème, (i) Pour tout polyèdre convexe entier P, on a:
cp(P) e et

<D(P) £ x*<D(P,)

avec les notations ci-dessus.
o

(ii) Pour tout cône saillant C, o« a: (p(C) e Sfd(M), et

<Ï>(C) (- l)dim(C)<£(_ Q

ow - C est le cône opposé à C.
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Démonstration. On peut supposer que P engendre V. On associe à P sa

fonction d'appui /, et une subdivision (oz)z 6 / de o comme en 2.2. Supposons

d'abord que P est borné; alors o V*. Montrons que

(4) £ (- i)codim(°/)cpC/; - Ci) (- i)"<p(P),
i g I

où on pose C, o,. Comme en 2.1, il suffit de montrer que
O

(-1)^ si m e P
(5) S (~ l)codim(°/)

i e I,m e fi - Ct 0 sinon

On pose B(m) {x e V* \ m(x)>f{x)}et on considère les groupes de

cohomologie H"(V*,B{m)).Puisque/ est linéaire sur chaque a,, l'ensemble

o, n B(m) est vide ou convexe, d'où comme en 2.1: H"(cj, n a,) 0

pour tout n^1. Par suite, B(m)) est le n-ième groupe de

cohomologie du complexe

(6) •••—+© H°(oi, B(m) no,)-» • • •

dim(a/) n

De plus, H°(oi,B(m) n o,) est égal à Q si m < / sur oz, c'est-à-dire si

m e fi - Ci; et à 0 sinon. D'autre part, on a:

Hn(V*, B(m)) Hdc~n(V*\B(m))

par dualité d'Alexander. De plus, puisque V*\B(m) {x e V* | m(x)

< f(pc)} est un cône convexe fermé de V*, on a: Hlc{V*\B(m)) 0 pour
tout i ^ 0, sauf si V*\B(m) {0} et / 0. D'où //"(F*, B(m)) 0 sauf si

o
n d et m(x) > f(x) pour tout x 0, c'est-à-dire si m e P. Finalement, la

caractéristique d'Euler du complexe (6) est (-1)^ si m e P, et 0 sinon,
d'où (5).

Lorsque P n'est plus supposé borné, mais ne contient aucune droite, on

peut trouver x e V* tel que le polyèdre convexe Pt {p e P | x(p) ^ tj soit
borné, et d'intérieur non vide, pour tout t assez grand. De plus, Pt est entier

pour une infinité de valeurs positives de t. En écrivant l'identité (4) pour Pt
et en faisant tendre t vers + oo, on obtient (4) pour P. En sommant les séries,

on en déduit que

(- i)"<h(P) £ <&(/,- £ x'Qi-Ps).
i g I, Ci saillant sg I

En particulier, si P C est un cône saillant, alors ^ {0} et (- l)^O(C)
0( - C) d'où (ii). L'assertion (i) s'en déduit aussitôt, si P ne contient aucune
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o o
droite. Mais si P contient une droite, alors P m + P pour un m e M,

o
d'où O(P) 0. D'autre part, P n'a pas de sommet, donc (i) est triviale dans

ce cas.

De l'identité (ii) et du corollaire 2.1, suit aussitôt le

Corollaire. Pour tout cône C, et toute subdivision (Oi)iei de son

cône dual, on a

o(c) L 9(ê,),
i e I, Ci saillant

où Ci est le cône dual de g,

2.4. Fonctions caractéristiques pondérées

Définition. Un poids co est la donnée, pour tout m e V qt tout cône C,

d'un nombre réel co(m, C), tel que

co (m, C) 0 si x$ C;

co (m, C) ne dépend que de la face de m dans C;

co( — m, - C) - co (m, C).
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Si F est une face de C, on pose (o(F, C) co(m, C) où m est un point
o

quelconque de F.
Pour tout poids co, on définit son poids dual co* par

co*(m,C) S (-l)codim(F)co(F, C)
m e F

(somme sur toutes les faces de C qui contiennent m).

Proposition. Pour tout poids co, on a: co** co.

Démonstration. Soit m e C; alors

co**(/w, C)= S (-l)codim^co*(F, C)
m e F

_ ^ ijcodimOF) + codimCF'jQj^/T'?
m e F C F'

Mais pour toute face F' de C, on a

(- l)codim(F') si p' QS1 }a face de m

0 sinon ;

en effet, grâce au théorème 2.3 (ii):

^ ^ 2 ^ codim (F) 4>(i0 (- l)d Z O(-F) (-l)rf<E>(-F')
F C F' F C F'

— J) codim (F')

d'où (7) Par suite, on a co**(m, C) co(F", C) où F' est la face de m.

Exemples.

(i) Soit x le poids défini par %{m,C)

(7) Yé (-l)codim^
m e F C F'

1 si m e C

0 sinon

Alors

1 si m e C
X*(m, C)

0 sinon

(ii) On suppose V euclidien. Notons S (m, s) la sphère de centre m, de

rayon c > 0. Pour s assez petit, le rapport qOS(ra, s) n C)/\i(S(m, s)) (où q
est la mesure de Lebesgue sur S (m, s)) ne dépend pas de s; notons-le a {m, C).
Ce nombre mesure l'angle sous lequel on voit C depuis la face de m. D'après
un résultat de Brianchon et Gram (voir [PS]) on a

a* a
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Soit co un poids. Pour tout polyèdre convexe P, et tout m e V, on pose
co(m, P) co(0, PF) où F est la face de m dans P, et PF est le cône formé des

+ p),f e F, t e R+ ,p e P (voir 2.2). On définit

<P® (P)E Mm, P)xm e R[[M]]
m e P n M

Alors (px cp où x est comme dans l'exemple (i). De plus, pour tout poids co,

on a

<MP) E P)<p(F)
F

(somme sur toutes les faces F de P). Donc cpcö(P) e ^d(M) d'après 2.3. On

pose Oœ(P) ^(<pœ(P)).

Théorème, (i) Pour tout polyèdre convexe entier P, on a

®JP) E 3>œ(^)

ow ^ est l'ensemble de sommets de P, P5 est le cône engendré par
- s y P.

(ii) Pour tout cône C, on a

Oco(C) (-1)Ow*(-C)
Démonstration, (i) On a, d'après le théorème 2.3,

<S>JP) E ®(F, P) 4>(F) E P) E W)
F F s e

où est l'ensemble des sommets de la face F. D'où

ow(P) E E ®(f, p) <&(£)) E <M^) •

s e £ F s s je?

(ii) On a de même

<MC) E MF, C)<Ï>(F) E (- l)dimWco(F, C)<D(-F)
F F

E (— l)dim(/7|(X>(F, C)<E>( —F')
F' C F

(_ l)dim(C) E) E (- l)COdim(/r)(0(P, C))<D(-F')
F' F J F'

(- l)dim<c> E <û*(F',C)<ï>(-F')
F'

(_ l)dta(C)4,<o:f(_C)
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3. Propriétés énumératives des polytopes convexes entiers

3.1. Comportement polynomial de fonctions de comptage

Soient P un polytope convexe entier, c'est-à-dire l'enveloppe convexe d'un

nombre fini de points de M, et co un poids (voir 2.4). Pour tout entier n ^ 1,

on pose

i(ù,p(n) — £ (ù(m,nP),
m 6 (nP) n M

où nP {np |p e P).

Théorème. La fonction ia,p se prolonge en une fonction polynomiale

sur R, de degré au plus d.

Démonstration. Soit CS l'ensemble des sommets de P. Pour tout 5 6

soit Ps le cône engendré par — s + P. Alors l'ensemble des sommets de nP

est et on a: (nP)ns Ps pour tout 5 6?. D'après le théorème 2.4, on a:

£ co (m, nP)xm
m g (nP) n M s e

De plus, chaque ®&(PS) est combinaison linéaire à coefficients entiers de

n

termes de la forme xq (1 - xm>) ~1 où n ^ d. Choisissons une forme
i 1

linéaire X sur F, telle que X(mj) ^ 0 chaque fois que 1 - xmi figure au
dénominateur d'un des Ow(P5). Soit /eR\{0) Il existe un unique
morphisme d'algèbres s: Z[M] R tel que z(xm) exp(tX(m)), où exp est la
fonction exponentielle. Par hypothèse, 8 s'étend à l'algèbre engendrée par
Z [M] et les Ow(P5). D'où la relation

(8) £ a(rn, nP) exp(tX(m)) £ exp (tnl(s)) s(Oa(Ps))
m e (nP) n M s g rf

De plus, e(Ow(P5)) est une combinaison linéaire de termes

n

exp (fk(aj)n (1 - exp(t\(m,)) -1
i 1

donc son développement en série de Laurent en t, est de la forme

+ oo

e^oCPi)) L
1 -
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avec rs ^ d. En comparant les termes constants dans les développements des

deux membres de (8) en série de Laurent en t, on trouve

Y co(m, nP) « Y É a-p(s) nP i
m e (rtP) nM s e 0 ^7Î

d'où le résultat.

On note encore i0hP la fonction polynomiale ainsi définie. En général,

V/>(0) n'est pas égale à 1; sa valeur correcte sera calculée dans le corollaire 3

ci-après.

3.2. Loi de réciprocité

On conserve les notations de 3.1. Soit co* le poids dual de co (voir 2.4).

Théorème. On a Videntité suivante entre fonctions polynomiales:

hD,P(- 0 (~ 1)«W(0 •

Démonstration. On reprend les notations de la preuve du théorème 3.1.

On a

<bJnP) £ x»>*a(Pt)
s e ir

(-1)« £
ie?

d'après le théorème 2.4. Par suite, on a

(9) £ <o(m, nP)exp(- l)d £ exp/>,))m e (nP) n M se?

+ OO

Soit s(OC0*(P5)) £ a*(s)tq son développement en série de Laurent.
Q - rs

En remplaçant t par - t dans (9), on obtient:

+ oo

Y cù{m, nP)exp( - tX(m)) (- l)d Y exP(~ tnX(s)) Y a*(s)tq •

m e (nP) n M s e W q - rs

D'où, en prenant le terme constant,

4,pin) XX (~\y££ a*_Js)7^(~(- l)rf4*,/> (- »)
î 6 p 0 p]

d'après la fin de la preuve du théorème 3.1.
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En prenant pour poids la fonction % définie dans l'exemple 2.4. (i), on

retrouve le résultat suivant (voir [E], §6):

Corollaire 1. Soient iP(ri) card(((/xP) n M)) et iP(n) card((^P) n M).
Alors les fonctions iP et iP sont polynomials, et on a iP(-1)

(-l)V(O.
Lorsqu'on prend pour poids la fonction a définie dans l'exemple 2.4 (ii),

on a a a*, d'où le

Corollaire 2 (voir [M], Theorem 4.8). La fonction

i*,p(n) Yé a(m>nP)
m e (nP) n M

est polynomiale, et ia,p( — t) (- 1 )dia,p(l)-

Les fonctions /a>P ont été introduites par H. Hadwiger pour caractériser

l'équivalence de deux polytopes par décompositions et translations entières

(voir [H], 2.2.9).
Revenons au cas général. Pour toute face F de P, l'espace affine < F>

qu'elle engendre, est muni d'une mesure canonique p: la mesure de Lebesgue
normalisée de façon que la maille unité du réseau M n (F) soit de mesure 1.

Corollaire 3. Pour tout poids co, le coefficient de td dans ia P(t)
o o ®

est cop(P), où co co(x, P) pour tout x e P. Le coefficient de td~l
dans iatP(t) est

I (co(F, P)-0)/2) [i(F)
codim (F) - 1

Enfin, le terme constant de i^jP{t) est £ (- l)dim^co(F, P).
F

Démonstration. On a

h,, pin) £ co

F

De plus, puisque

iF°(n) - n~dim^ - n ~dim(^ £ 1

o
m e F n (1 /n)M

est une somme de Riemann pour l'intégrale \Fd\x, on a

if°(n) ~ «dim(F)
n —> o°

d'où la première assertion. Montrons d'abord la deuxième assertion lorsque
co %. Alors
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iP(n) - card((/2ÔP) n M) card ((nP) n M) - card((«9P) n M)
//?(/!) (-1 )dH-n)

où dP désigne le bord de P. Donc, si a est le coefficient de nd~1 dans iP(n),

E n(F) (-l)rf(-l)d-'a,
codim(F) - 1

d'où ût £ ja(F)/2. Dans le cas général, puisque
codimCF) - 1

LA")E <ù{F,P)ip(n) (-
F

+ E (-l)dim^co(F,P)/F(-«)
F*P

le coefficient de nd~l dans itö,p(n) est

©a- I co(/sP)n(F).
codim(F) 1

Le même argument réduit la preuve de la dernière assertion au cas où

(0 il faut montrer que iP(0) £ (- l)dim(^ 1. Mais cela résulte faci-
F

lement de la preuve du théorème 3.1, et du fait que

E <Hps)1
•

5 6 ^
V

En effet, les Ps sont les cônes de dimension maximale d'une subdivision de

V* (voir 2.2), et le corollaire 2.1 s'applique.

3.3. Le cas d'un polytope rationnel

Dans cette section, on considère un polytope convexe P dans V, rationnel

par rapport au réseau M: pour tout sommet 5 de P, il existe un entier ns> 0

tel que ns - s e M. On va étendre à cette situation les résultats de 3.1 et 3.2.

Soit co un poids; posons i&,P(n) £ co(m,nP). Notons M le
'

me (nP) n M

réseau engendré par M et les sommets de P. Soit y le plus petit entier positif
tel que y - s e M pour tout sommet s de P (c'est l'exposant du groupe abélien

fini M/M).
\ Théorème. Il existe des fonctions polynomiales i^]P, i{^]P sur R,

telles que i^,P{n) i^]P(n) si n r (mod y). De plus, on a

»«?*(-o (-i)"4v,2(-o
pour tout te R.
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Démonstration. Soit n:Z[[M]\ ^ Z[[M]] l'application définie par

n( E^dpX") S apxP
p e M p e M

C'est un morphisme de Z[M]-modules. Soit le sous-ensemble de Z

formé des produits finis d'éléments de la forme 1 - x"^p e M\{0}; et soit

S "1Z [M]le sous-anneau du corps des fractions de Z engendré par S'1

et Z [M\.De l'identité

/Y-l
(1 -XP)~1 (1 -xip) e?»

résulte que S~lZ[M\ S'lZ[M\.Parsuite, n s'étend en un unique

morphisme de Z [M]-modules, noté encore tc: S-]Z[M] t-> S-'Z[M]. On a

donc, en posant

®œ(P)= E _C ù(m,P)xmetOœ(P)= I c

m e P n M m e P n M

®JP) E nsel

De plus, puisque chaque Ps est rationnel pour le réseau M, on a: <b(Ps)

e SjlZ[M].Soit n>0un entier; écrivons + où est entier, et où

1 ^ r^ Y- Alors

E n(xns%(Ps)) E
se? se?

Le résultat s'en déduit comme dans les preuves des théorèmes 3.1 et 3.2.
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