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68 J.-C. HAUSMANN

7. EXEMPLES D’ACTIONS QUASI LINEAIRES

Dans ce paragraphe, nous considérerons la «donnée» suivante:

— Mn"+1 est une variété riemanienne,
— G est un groupe de Lie compact opérant sur M par isométries,

— f: M — R est une application différentiable telle que f(gx) = f(x) pour
tout xe M et g € G.

— L’application f a un unique point critique p € M, qui est un extremum.
Le point p est donc un point fixe pour I’action de G. On choisit une isométrie
h entre I’espace tangent 7,M et R"*! avec son produit scalaire standard.
L’action induite de G sur T,M est donc transportée par A en une action
orthogonale de G sur R”*! que nous noterons a,

— Soit ¢ € R une valeur réguliére de f. On suppose que la variété
SF'({q}) est difféomorphe a S”. Remarquons que f~!({q}) est une G-variété.

FIGURE 3

Pour une telle donnée, nous allons démontrer les trois propositions suivan-
tes:

(7.1) PROPOSITION. L’actionde G sur f~'({q}) est QL associéea a.

' (7.2) PROPOSITION. Supposons que p est un extremum non dégénéré.
- Alors laction de G sur f ~1({q}) est différentiablement conjuguée a «a.
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(7.3) PROPOSITION Soit o’ une action QL libre de G sur Sn
associée & ’action linéaire a. Alors il existe une donnée comme ci-dessus
pour laquelle Iaction de G sur f~'({q}) est différentiablement conjuguée

I

a a .

Preuves. Soit U un voisinage de O dans R”*! tel que
® = exp © h: U~ M fournisse une carte au voisinage de p. On supposera
que p est un minimum et que f(p) = 0. Comme p est I’unique point critique
de f, il existe g’ tel que 0 < ¢’ < q,f ~'({q’}) C o(U) et £ ~'({g}) admet un
difféomorphisme G-équivariant sur f ~'({¢’}) (on utilise le flot du champ
grad f/ | grad f| (voir [Mi3], Theorem 3.4). Comme ¢ ~'| f~'({g}) est un
plongement G-équivariant de f~-!({q}) dans (R"*!,a) cela prouve la
proposition (7.1).

Si maintenant p est un minimum non-dégénéré, le lemme de Morse fournit
une carte y telle que fow - '(Xi,...,Xy41) = X> + ... + x>, ,. Dans ce
systéme de coordonnées, les variétés de niveau de f sont des spheéres standards
qui intersectent donc chaque rayon de R”+! transversalement. On en déduit
que (fo )~ 1({q’}) intersecte chaque rayon de R"*! transversalement, si g’
est suffisamment petit. On a alors un difféomorphisme équivariant de
(f-0)~'({g'}) sur la sphére de rayon 1 par la projection radiale. Cela
démontre (7.2). Pour démontrer (7.3), on va construire la fonction f pour
M = R"*! muni de P’action a. Si o’ une action libre QL associée a o, on a,
par le point d) du théoréme (3.1), un difféomorphisme G-équivariant
g:(S"xR,a) = (S" xR, a’) (actions produits). Posons g(x,?) = (g,(x, 1),
g,(x,1)). Soit

w(x, t) = es2xlogh)
On a donc un difféomorphisme G-équivariant de
(R™*1 = {0}, @) = (8" X ]0, o[, o)
sur (§” X 10, o[, a”) pour les actions produits donné par
(e, 1) = (8106 1), w(x, 1))
On définit f: R”*! — R par:
SO t)y =e- /v et £0)=0.

Comme le difféomorphisme g est en quelque sorte «périodique» (voir sa cons-
truction dans la preuve de (3.1)), on a que toutes les dérivées partielles, de tout
ordre, de g sont bornées et de plus # — 2 < g,(x,#) < ¢ + 2. On en déduit que
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toutes les dérivées partielles de w(x, ¢) sont bornées. Il s’en suit que f est de
classe C* avec toutes les dérivées partielles s’annulant en 0. On vérifie
aisément que f a les propriétés voulues, ce qui démontre (7.3).
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